AD-A264 652

IR MISSION
CRIT
COMPUTER nssolgﬁ\éss
MANAGEMENT ¢
GUIDE

IRMWARE

SOFTWARE

\I«\l}l|l\||lu||lll|uu‘v|m|

ll\m\n|numlimluuummu.m.m

R

93-11342
QA

PAPERWARE

MISSION CRITICAL
COMPUTER RESOURCES
MANAGEMENT
GUIDE

)9 70

DEFENSE SYSTEMS MANAGEMENT COLLEGE
FT. BELVOIR, VA 22060-5426

For sale by the U.S. Government Printing Office
Superinter lent of Documents. Mail Stop: SSOP, Washington, DC 20402-9328

PREFACE

Preface

This document is one of a family of education-
al guides written from a Department of
Defense (DOD) Perspective (i.e., non-ser-
vice peculiar). These books are intended
primarily for use in the courses at the Defense
Systems Management College (DSMC) and
secondarily as a desk reference for program
and project management personnel. The
books ar¢ written for current and potential
DOD Acquisition Managers who have some
familiarity with the basic terms and defini-
tions of the acquisition process. It is intended
to assist both the Government and industry
personnel in executing their management
responsibilities relative to the acquisition and
support of defense systems. This family of
technical guidebooks includes:

Integrated Logistics Support Guide; First Edi-
tion: May 1986

Systems Engineering Management Guide;
Second Edition: Dec 1986

Department of Defense Manufacturing
Management Handbook for Program
Managers; Second Edition: July 1984

RELEASE TO DTIC & NIIS USERS IN PAPER
COPY AND MICROFICHE, AUTH: DSMC PRESS
(MR BALL 703-805-28%2) PER TELECON,
21 MAY 93- CB

{
DTIC QUALITY THOTRCTED 8 |[Pist

Test and Evaluation Management Guide,
March 1988

Acquisition Strategy Guide, First Edition, July
1984

Subcontracting Management Handbook, First
Edition, 1988

A Program Office Guide to Technology Trans-
fer, November 1988

This guidebook was developed by the follow-
ing members of the DSMC Technical
Management Department staff:

Lt Col Israel I. Caro, USAF

Lt Col Ronald P. Higuera, USAF (Retired)
Cdr Frank R. Kockler, USN (Retired)

Mr. Sherwin J. Jacobson

Mr. Alan Roberts

aY

In addition, Capt Leigh H. French, USAF, O
and Ms. Mary E. (Lyn) Dellinger, also from
the Technical Management Department,
provided valuable additions and comments to
this edition.

'E‘ﬁg

i sec e salty ucedes
. ;ﬂveumhnd/or
Speslal

Pl

Table of Contents

TABLE OF CONTENTS

PREFACE i 3.3.3 Firmware
3.3.4 Peonleware
CHAPTER 1 3.3.5 Documentation
INTRODUCTION 3.3.6 Development/Support Facilities
34 COMPUTER ARCHITECTURE
INTRODUCTION 1-1 34.1 Bits and Bytes
REFERENCES 1-2 3.4.2 Instruction Set Architecture
3.5 SOFTWARE LANGUAGES
CHAPTER 2 3.5.1 Machine Language
INTRODUCTION TO COMPUTER RESOURCES 3.5.2 Asscmbly Language
3.5.3 High Order Language
2.1 HISTORICAL PERSPECTIVE 2-1 3.54 Application Generators (4GL)
2.2 SOFTWARE IMPACT ON SYSTEM 2-2 3.6 ADA
2.3 LIFE CYCLE COST TRENDS 23 3.6.1 Ada Dcsign
2.4 EVOLUTION OF DIGITAL SYSTEMS 2-4 3.6.2 Ada Compilers
2.5 WEAPON SYSTEM SOFTWARE 2-6 3.6.3 Ada Language Features
2.6 CURRENT STATE OF AFFAIRS 2-6 3.6.4 Ada Environment
2.7 HISTORICAL CONTRIBUTORS 2-7 3.64.1 KAPSE
2.8 MANAGEMENT GUIDANCE 2-8 3.6.4.2 APSE
2.9 REFERENCES 2-9 3.6.4.3 Ada Program Design Language
3.7 Ada SURVIVAL
CHAP™™ 3 3.8 REFERENCES
TECHNICAL Fu. NDATIONS
CHAPTER 4
3.1 INTRODUCTION 31 SOFTWARE ACQUISITION POLICY
3.2 INSIDE THE COMPUTER 3-1
3.2.1 Input/Output Scction 3-2 4.1 INTRODUCTION
3.2.2 Central Processing Unit 3-2 4.2 BROOKS BILL
3.2.3 Memory Unit 33 43 DOD DIRECTIVE 5000.29
3.24 Computer Hardwarc 3-3 44 WARNER-NUNN AMENDMENT
3.3 COMPUTER RESOURCES 34 4.5 MCCR STANDARDIZATION
3.1 Embedded Computer Hardware 3-5 4.0 DOD DIRECTIVE 3405.2
3.,.2 Software 3-5 4.7 DOD DIRECTIVE 3405.1

3-5
3-6
3-6
3-7
3.7
3-8
3-8

3-10
3-10
3-11
3-12
3-13
3.13
3-14
3-15
3-16
3-16
3-16
3-17
3-17
3-18

4-1
4-1

4-3
4.3
4-4
45

Table of Contents

4.8 Ada PROGRAMMING LANGUAGE 4-5
49 SOFT'NVARE ENGINEERING AND

TECHNOLOGY 4-6
4,10 SOFTWARE SUPPORT 4-7
4.11 TOP LEVEL SERVICE DIRECTIVES

AND GUIDELINES 4-7
4.12 SOFTWARE DATA RIGHTS 4-8
4.13 AUTCMATED INFORMATION

SYSTEMS 4-9
4.14 SUMMARY 4-9
4.15 REFERENCES 4-10

CHAPTER §

SOFTWARE DEVELOPMENT PROCESS

5.1 INTRODUCTION 5-1
5.2 SUMMARY OF DEVELOPMENT

ACTIVITIES 5-2
5.3 SYSTEM REQUIREMENTS ANALYSIS

AND DESIGN 5-3
5.3.1 System Design 5-4
5.4 SOFTWARE DEVELOPMENT 5-5
5.4.1 Software Requirements Analysis 5-6
5.4.2 Preliminary Design 5-7
5.4.3 Dectailed Design 5-8
5.4.4 Coding and CSU Testing 5-9
5.4.5 CSC Integration and Testing 5-10
5.4.6 CSCI Testing 5-10
5.5 SYSTEM INTEGRATION &TESTING 5-12
5.6 TAILORING 5-12
57 SUMMARY 5-14
5.8 REFERENCES 5-15

CHAPTER 6

SOFTWARE TEST AND EVALUATION

6.1 TEST PLANNING 6-1
0.1.1 System Support Computer Resources 6-1
6.1.2 Mission Critical Computer Resources 6-2
6.2 COST OF SOFTWARE FIXES 6-5
6.3 SOURCES OF SOFTWARE ERRORS 6-6
6.4 TYPES OF TESTING 6-6
6.4.1 Human Testing 6-6
6.4.1.1 Inspections 6-6
6.4.1.2 Walk-throughs 6-7
6.4.1.3 Desk Checking 6-7
6.4.1.4 Pcer Ratings 0-7
6.4.1.5 Dcsign Revicws 6-7
6.4.1.6 Bencefits of Human Testing 6-8
6.4.2 Softwarc Only Testing 6-8

6.4.2.1 Black Box or Functional Testing 6-8

6.4.2.2 White Box or Structural Testing
6.4.23 Top-Down/Bottom-Up Testing
6.4.2.4 Software System Testing

6.4.3 Integration Testing

6.4.3.1 Hot Bench Testing

6.43.2 DT&E/OT&E Testing

6.5 TEST TOOLS

6.6 DEBUGGING

6.7 MANAGEMENT GUIDANCE
6.8 REFERENCES

CHAPTER 7

6-9
6-10
6-11
6-12
6-12
6-13
6-13
6-14
6-15
6-16

POST DEPLOYMENT SOFTWARE SUPPORT

7.1 BACKGROUND

7.2 PROBLEM AREAS

7.3 MANAGEMENT PERCEPTIONS

74 MANAGEMENT CONCERNS

7.5 WHATIS PDSS?

7.6 SOFTWARE LIFE CYCLE
CONSIDERATIONS

7.7 IMPROVING THE PDSS PROCESS

7.8 MANAGEMENT GUIDANCE.

7.8 REFERENCES

CHAPTER 8

7-1
7-1
7-3
7-4
7-5

7-6
77
7-11
7-11

PLANNING FOR COMPUTER SOFTWARE

8.1 INTRODUCTION

8.2 PLANS AND DOCUMENTATION

8.2.1 Program Management Plan (PMP)

8.2.2 Test and Evaluation Master Plan (TEMP)

8.23 Integrated Logistics Support Plan (ILSP)

8.2.4 Computer Resources Life Cycle

Magement Plan (CRLCMP)

8.3 ENGINEERING STUDIES

84 COMPUTER RESQURCES WORKING
GROUP (CRWG)

8.5 SYSTEM SECURITY

8.6 CONTRACTUAL CONSIDERATIONS

8.6.1 Source Sclection Plan (SSP)

8.6.2 Request for Proposal Package (RFP)

8.6.2.1 Rcquiremewnts Specification(s)

8.6.2.2 Instructions to Offerors

8.6.2.3 Proposal Evaluation Criteria

8.6.2.4 Statement of Work (SOW)

8.6.2.5 Work Breakdown Structure

8.6.2.6 Dcliverable Items

8.6.2.7 Special Contract Requirements

8.6.3 Source Sclection Process

8.6.3.1 Draflt RFP

8-1
8-1
8-1
8-2
8-2

8-3
8-3

8-4
8-6
8-6
8-6
8-7
8-7

8-8
8-8
8-8
8-8

89
8-9

8.6.3.2 Populating the Source Selection

Organization 8-10
8.6.3.3 Evaluation Process 8-11
8.6.3.4 Evaluating Offeror’s Proposal 8-12
8.6.3.5 Softwarc Development Capability

Capacity Review 8-12
8.6.3.6 Software Capability Evaluation 8-14
8.7 REFERENCES 8-16

CHAPTER 9
MANAGEMENT PRINCIPLES
9.1 INTRODUCTION 9-1
9.2 SOFTWARE ENGINEERING 9-2
9.3 GUIDELINES AND RULES 9-3
9.4 PROCESS CONTROL 9-5
9.5 REQUIREMENTS AND PROTOTYPING 9-8
9.5.1 Specification Development Tools 9-8
9.5.2 Rapid Prototyping 9-9
9.5.3 Incremental and Evolutionary Development9-10
9.6 SUMMARY 9-11
9.7 REFERENCES 9-11
CHAPTER 10

SOFTWARE CONFIGURATION MANAGEMENT

10.1 INTRODUCTION 10-1
10.2 CONFIGURATION IDENTIFICATION 10-2
10.3 CONFIGURATION CONTROL 10-3
10.3.1 Interface Control 10-5
10.3.2 Baselinc Management 10-6
10.3.3 Configuration Control Board 10-7
10.3.4 Software Configuration Review Board 10-7
10.3.5 Configuration Control Process 10-9
10.4 CONFIGURATION STATUS
ACCOUNTING 10-10
10.4.1 Software Development Library 10-10
10.4.2 Software Development Folder 10-11
10.5 CONFIGURATION AUDITS 10-11
10.7 SUMMARY 10-12
10.8 REFERENCES 10-12

CHAPTER 11
INDEPENDENT VERIFICATION & VALIDATION

11.1 BACKGROUND 11-1
11.2 VERIFICATION 11-2
11.3 VALIDATION 11-3
11.4 CERTIFICATION 11-3
11.5 THE IV&V PROCESS 11-3
11.5.1 Dectermining the Need for IV&V 11-3

Table of Contents

11.5.2 Establishing the Scope of IV&V 114
11.5.3 Decfining the IV&V Tasks 114
11.5.4 Estimating Software IV&V Costs 11-6
11.5.5 Sclecting IV&V Agent 11-7
11.6 REFERENCES 11-7

CHAPTER 12

METRICS

12.1 INTRODUCTION 12-1
122 TYPES OF METRICS 12-1
12.2.1 Management Metrics 12-1
12.2.2 Quality Metrics 12-2
12.2.3 Process Metrics 12-2
12.3 METRICS APPLICATION 12-2
12.3.1 Pre-Solicitation 12-3
12.3.2 Government Model 12-3
12.3.3 Resource Needs 12-3
12.3.4 RFP and SOW 12-4
12.3.5 Choice of Mcasures 12-5
12.3.6 Use of Models and Norms 12-5
12.3.7 Process Maturity 12-5
12.3.8 Negotiation 12-5
12.3.9 Contract Monitoring 12-6
12.3.10 Adjustments and Refinements 12-6
124 PROGRAM MANAGER’S METRICS 12-6
12.4.1 Software Size and Cost Status 12-7
12.4.2 Manpowcer Application Status 12-8
12.4.3 Cost and Schedule Status 12-8
12.4.4 Resource Margins 12-9
12.4.5 Quantitative Software Specification Status12-10
12.4.6 Design/Development Status 12-10
12.4.7 Defects/Faults/Errors/Fixes 12-11
12.4.8 Test Program Status 12-12
12.4.9 Softwarc Problem Reports Status 12-12
12.4.10 Delivery Status 12-13
12.5 SUMMARY 12-13
12.6 REFERENCES 12-13

CHAPTER 13

EPILOGUE
13.1 INTRODUCTION 13-1

132 50OFTWARE COST UNCERTAINTIES 13-3
13.3 SOFTWARE ACQUISITION CYCLE 13-4

134 PROTOTYPES 13-5
13.5 SCHEDULES AND MANNING 13-6
13.6 TEAM SIZE AND MANAGEMENT 13-7
13.7 ASSESSING PERFORMANCE 13-8
13.8 MANAGEMENT GUIDANCE 13-9
13.9 REFERENCES 13-10

Table of Contents

LIST OF ACRONYMS
GLOSSARY OF TERMS
PMP OUTLINE

TEMP OUTLINE

ILSP OUTLINE
CRLCMP OUTLINE

APPENDICES
A-1l SOURCE SELECTION PLAN G-1
B-1 SOFTWARE DIDs H-1
C1 APPLICABLE SOFTWARE MANAGEMENT
D-1 REFERENCES I-1
E-1 INDEX J-1

F-1

CHAPTER 1

Chapter 1 Introduction

INTRODUCTION

Mission Critical Computer Resources
(MCCR) refers to the totality of computer
hardware and computer software that is in-
tegral to a weapon system along with the as-
sociated personnel, documentation, supplies
andservices. A natural question to ask is "Why
should a program manager be that interested
in MCCR." The answer is fourfold. First,
software for weapon systems is on the "critical
path" of system development. If software
development falls behind schedule, the entire
weapon system development will also fall be-
hind schedule. Second, software can produce
development problems of sufficient mag-
nitude to result in costly program overruns. It
is not uncommon for software development
costs to exceed initial budget estimates by as
much as 50% to 100%. Third, the perfor-
mance of modern weapon systems is largely
dependent on the quality of their computer
resources; the system is only as good as its
software. Fourth, it is an established fact that,
if the software development falls behina
schedule, the devzlopment lead times cannot
be shortened simply by applying more resour-

1-1

ces. Money can’t fix the problem -- only time
can [1]. Once a program falls behind, little
can be done to save it!

Management of MCCR development cannot
be ignored or delegated. If the program
manager leaves all MCCR management con-
siderations to the development contractor,
there is the strong possibility that the software
development will encounter significant dif-
ficulties. The management of MCCR
development may be compared with piloting
an aircraft. Without the proper application of
the necessary control, it is extremely unlikely
that the aircraft will safely reach the intended
destination. Without the appropriate
management directives, it is unlikely that
MCCR development will result in a suitable
product. There are no autopilots for MCCR
development. Effective MCCR acquisition
management, like piloting, is a difficult task
but, with proper knowledge and care, not im-
possible [2]. This guide will only cover the
basics by providing enough background to
enable straight and level flight. Aerobatics

Chapter 1 Introduction

(i.e., unconventional developments) depend
on greater mastery of the fundamentals,
which is outside the scope of this guidebook.

The actual MCCR development will be ac-
complished by a system development contrac-
tor, On occasion, the "contractor" may be
another DOD agency. The development con-
tractor has the responsibility of delivering a
software product that meets all contractual
requirements. Unfortunately, it is not pos-
sible to specify precisely and completely in a
contract all the characteristics of the final
software product and its development
process. Experience has shown that the dif-
ference between successful and unsuccess-
ful development efforts is often the rigor and
timeliness of the direction given to the con-

Q9]

tractor by the procuring agency’s program
management organization [2].

REFERENCES

1. Meinke, George H., Airborne Software Ac-
quisition Management...A Guide for New
Software Managers, Air Command and Staff
College Report Number 82-1685, Air Univer-
sitv, Maxwell AFB, Al 36112.

2.Rubey, Raymond J., A Guide to the Manage-
ment of Software in Weapon Systems, Prepared
by Softech for the U.S. Air Force Aeronauti-
cal Systems Division and the U.S. Army Avia-
tion Systems Command, 2nd Edition, March
1985.

CHAPTER 2

Chapter 2 Introduction to Computer Resources

INTRODUCTION TO COMPUTER

RESOURCES

2.1 HISTORICAL PERSPECTIVE

The development of computer software as a
recognized activity is less than 40 years oid.
During the infancy of digital computers
(1950s) all software or computer programs
were dev 'oped by engineers or scientists as
an adjunct to their work with computers. In
the early 1960s, computer technology was
usually taught under the auspices of university
or college electrical engineering depart-
ments. It wasn’t until the late 1960s that com-
puter science departments were being
established as separate entities. The term
"software engineering" was not coined until
1968 when the term was used as a theme of
several workshops held in West Germany and
Italy to address the growing problems as-
sociated with software development [1]. So
unlike other disciplines, such as electrical en-
gineering, software engineering is a relative
newcomer. Because of this, its practitioners
do not have at their disposal the wealth of
time-tested practices, procedures and tools so
readily available to its sister disciplines. In

2-1

circuit design, for example, an electrical
engineer can use off-the-shelf components
and modules with the necessary charac-
teristics to build large portions of a system.
Off-the-shelf components or modules are not
widely available to the software engineer.
Quite often attempts to use existing software
lead to major problems if the designers are
not careful when integrating the existing
software into their design. Designers must
fully understand all of the characteristics of
existing software as well as its overall perfor-
mance and reliability. Software engineering
is still in its infancy. New innovations are
being introduced every day, but they are more
evolutionary in nature than revolutionary.
Many of the problems associated with
software engineering are due to the relative
immaturity of the discipline. There is still too
much art and craft and not enough engineer-
ing in software development; although the
trend is definitely changing.

The introduction and growth of digital sys-
terus in the DOD parallel the introduction

Chapter 2 Introduction to Computer Resources

and growth of digital systems in the commer-
cial market place. In fact, the stringent re-
quirements of military systems often
spearheaded the development of computers
and software throughout the industry, espe-
cially during the early years of computer
development. In the early 1950s all weapon
systems were analog and it wasn’t unti} the
mid-fifties that digital systems were intro-
duced into weapon systems. During the six-
ties there was a rapid incorporation of digital
systems with an almost exponential growth
occurring in the seventies. Some of the
reasons for this rapid growth were:

(a) Advances in integrated circuits (ICs), the
basic building blocks of electronic equipment
and digital computers. ICs were being
developed with ever increasing capabilities
and an accompanying decrease in power re-
quirements, size and cost.

(b) The introduction of the microprocessor,
which is essentially a computer on a chip,
allowed designers to replace many pieces of
hardware with asingle component roughly the
size of a postage stamp.

(c) The ever increasing Soviet threat and the
need to counter it in the face of decreasing
defense budgets. This drove the services to
build fewer but smarter and technically supe-
rior weapons relying more and more on com-
puters and software.

(d) The realization that software is inherently
more flexible than hardware and better able
to accommodate the ever changing threat.

(e) The tremendous advances made in the
commercial marketplace in computers and
software.

Today, all weapon systems are dependent on
computers and software. This phenomenal

growth of digital systems in air~raft, for ex-
ample, is shown in Figure 2-1. In 1966 the
FB-111 required an on-board computer
memory of roughly 60,000 words but by 1988
the B-1B Bomber was approaching on-board
computer memory requirements of about 2.5
million words. Current and future systems
will greatly exceed these memory require-
ments with large scale software systems being
the norm.

2.2 SOFTWARE IMPACT ON SYSTEM

What does the curve in Figure 2-1 tell us? If
one were to use the analogy of constructing a
brick wall, one can say that a 3000 square foot
wallrequires about three times as many bricks
as a 1000 square foot wall. Ttis not necessarily
more difficult to build, it just takes longer.
Unfortunately this analogy breaks downwhen
it comes to software.

The impact of software on system design and
development is illustrated in Figure 2-2 [2].
The dashed lines represent the average in-
fluence of either software or hardware on
system design and development while the
solid lines on either side represent the maxi-
mum and minimum range of influence. Itis

4
10" THOUSANDS OF WORDS
§ ATF
o}
t (]
-1
N W AIRFOACE 618 o
[]
B EF-111
8 LANTEN @ .~
© W F6CD
A B-1A :]
R M o m C17
) F16 g HH-60A
M 1 CB5A |
e Ll ® F.15
M l F
H -1
o i WFBIN
R
1
vy !
!
!
i, oyt ds e b
65 70 75 80 85 80 95
YE£R

Fig. 2-1 Growth of Aircraft Systems

—
E ST o
L \\\ T 7
A ©8 N ~ -
T N . SOFTWARE
! ~ ke
MY AN s /\\\'\"
g O " ;
\\x,’ ~ . - \“
| AN o
N o4t / P R
F / - el
5 // 7T T HARDWARE
E o2} P S
N Ve .7 ~_
ST . T
c T
3 e
0 gy LSS Vgl | { 1 L 1 1 TR

50 55 80 65 0 75 80 85 90 85 2000
YEAR

Fig. 2-2 Software Impact on System
Design/Development

very clear that in 1950 software had no in-
fluence on weapon systems design. This is
because these systems contained no digital
hardware. By 1980, however, the relative in-
fluence of software on system design averaged
about 50% with some systems being in-
fluenced by as much as 70% or as little as 30%.
This means that software considerations af-
fected overall system design and development
about 50% of the time. System engineers
could no longer make hardware design
decisions without considering the software
implications. As canbe seen, the trend seems
to he for an increasing role tor software.
What the figure shows is that software is no
longer merely a part of the system; software
has become a system in its own right and has
assumed the integration function for the
various subsystems of a weapon.

23 LIFE CYCLE COST TRENDS

Figure 2-2 implies that hardware has been
traded for software. Why should that be a
problem? The problem is one of cost as
shown in Figure 2-3 [3]. This figure shows that
over the last 30 years the cost of the software,
as a percentage of total computer resources
cost, has been growing by leaps and bounds
whereas the associated computer hardware

W

Chapter 2 Introduction to Computer Resources

has been decreasing by an equally dramatic
percentage. A personal computer (PC) of
today has more power than the large com-
puters which were the workhorses of early
space programs and it costs a mere fraction of
its predecessor. In addition, a PC will sit on a
corner of your desk while the early computers
occupied large rooms and required thousands
of watts of electricity and tons of air condition-

ing.

A word of caution is necessary. Figure 2-3
only refers to large, complex, military systems
which are produced in limited numbers. In
commercial products software is generally
simpler and items are manufactured in very

100 — e
m’_'”/
80 - COMPUTER T
o HARDWARE
£ 60 | e
R
c
E 40 }-
N /-7 BOFTWARG -
T

C O USURPORT

L;-T-Q R e CLE ‘.{_; e R B T
63 64 65 66 67 68 63 70 3 76 79 82 85

YEAR

Fig. 2-3 Life Cycle Cost Trends

large numbers. Therefore the cost of software
used in appliances, automobiles, toys, and
other commercial products actually comprise
but a small fraction of the total cost of these
items [4]. This is depicted in Figure 2-4.

The decreasing size of computer hardware,
along with their increasing capabilities, heg
resulted in an explosion of applications in our
wedpon systems. Software not only performs
many of the functions previously performed
by specialized hardware, it also performs
many of the functions which would be impos-
sible or impractical to perform with just dedi-
cated hardware. This tremendous use of

Chapter 2 Introduction to Computer Resources

computers has come at a price. As Figure 2-3
shows, the ratio of computer hardware and
software expenditures has changed from a
ratio of 80% hardware and 20% software in
1960 to a ratio of 20% hardware and 80%
software in 1980. There has been an equally
dramatic increase in the costs associated with
supporting the software once the system is
delivered. The primary reason software
deve.opment and support are so expensive is

HARDWARE

e eT %
0}’}0.. GRS

2525 oS
RIS
P R
SRR

HARDWARE

e
Sottware
Percentage
7 -
»
o R]
in a circuit For a satellite
inaTV set control system

Fig. 2-4 Commercial Software

that both functions are extremely labor inten-
sive. It is an ironic fact that an industry which
has provided the means for other segments of
industry to automate, has itself failed to
automate. There are very few machines and
computer software that will automatically
generate computer programs directly from a
set of requirements. Those that exist are
limited to very special applications.

The cost of DOD software is immense as can
be seen from the chart in Figure 2-5. Accord-
ing to this Electronics Industries Association
study [S], by the year 1990 the cost of software
alone will be approximately $25.6 billion. To
put that figure in perspective, the total price
tag for the B-1B Bomber fleet was around $20
billion in 1981 dollars. That included 100
aircraft, the initial spares, the weapon system
crew and maintenance trainers and the initial
logistics support. The DOD could greatly in-
crease the strategic bomber fleet, for the
amount of money being spent on software
today.

40

SOFTWARE + HARDWARE

wZQO~-re-—-®
3

.~ HARDWARE

13.8
11.4

L o4
-
p=1

54 58 58 g1 63 65 68

2o 34 39 S5

t 1

g2 83

1]
94 85

88 88 90

YEAR

Fig. 2-5 DoD Embedded Computer Market

In contrast, the amount of money being spent
on computer hardware has barely increased.
When one considers that computer hardware
is more powerful today then ever before, the
cost for comparable performance has actually
decreased immensely. Many factors have
contributed to the decreasing cost of com-
puter hardware but certainly automation has
been a major contributor. Unfortunately it
still requires a person to program a computer
and programmers and other software
specialists are expensive.

a1

24 EVOLUTION OF DIGITAL SYSTEMS

If one were to make a comparison of Korean
War vintage aircraft with modern day aircraft,

KOREAN VINTAGE _ MODERN DAY

Flight Centrols Flight Controt System

Navigation Gear {nertial Nav Sys (INS)

Radar Radar

Engines : Engine Control Sys

Fuel Controls 't) Fuel Managemen: Sys
Weapons o] Weapons Management Sys
Radios G Communication Sys
Instruments Cantrols & Displays (C&D)
Pilot Pilot

/ N
Other Subsystems‘J

Fig. 2-6 Evolution of Fighter Aircraft

one realizes that both aircraft contain the
same types of functional systems (Figure 2-6).
A Korean War vintage aircraft contained
flight controls, navigational gear, radar, etc.
A modern day aircraft has the same type of
systems except it now has a flight control sys-
tem, an inertial navigation system or INS, a
radar, etc. Let’s examine some of these sys-
tems in greater detail.

A 1952 F-86 Sabre, for example, had a stick
which was physically attached to mechanical
linkages. These in turn were attached to the
various hydraulic actuators and control sur-
faces such as elevators. When a pilot moved
the stick, there would be an accompanying
movement of the control surfaces because of
the mechanical connection. The amount of
force required to move the stick depended on
how fast the aircraft was flying and its attitude.
Contrast this with the latest version of the
F-16 where the mechanical linkages have
been replaced with electrical wires and
motors. Movement of the stick creates an
electrical signal which travels down the wires
and activates the motors to physically move a
control surface. There may also be two or
more wires to provide redundancy and, since
there is no feedback from mechanical
linkages, a means to artificially give the pilot
"a feel” for moving the control surfaces.

All of this is done with modern computers.
The signals traveling down the wire are digital
in nature and the redundancy checks and the
artificial "feel” are all controlled by digital
computers. Furthermore, the computer gives
the flight control system the ability to "fly" the
aircraft in ways not possible if a pilot were the
controlling element. The X-29, the forward
swept-wing experimental aircraft, would be
virtually impossible for a pilot to fly without
the complex computer dependent flight con-
trol system. The movement of the stick allows
the pilot to indicate where he wants the

2-5

Chapter 2 Introduction to Computer Resources

aircraft to go, but the computer actually flies
the airplane.

An F-86, for example, carried navigational
gear on board to allow the pilot to find his way
to his destination. This consisted of a mag-
netic compass, an altimeter for altitude in-
dication and perhaps some kind of radio
direction finding equipment. With this
navigational gear the pilot was able to
navigate using dead reckoning techriques.
Today we have an Inertial Navigation System
(INS) comprised of gyroscopes, ac-
celerometers, and computers to perform the
same function. The INS is aligned before
takeoff and it allows the pilot to accurately
navigate from one point to another. This is
only possible because of the computei. Using
aknown model of the errc.r sources within the
INS, the computer uses a mathematical tech-
nique known as Kalman Filtering to keep
track of the aircraft’s exact position over time.

The Korean War vintage cockpit, packed full
of instruments, has beenreplaced with a cock-
pit containing just a few instruments and con-
trols and display screens. Any information
required by the pilot is simply displayed on the
screens at the push of a button, anything from
attitude indications to the status of weapons.
They are all under the control of computers.
Furthermore, there are now new subsystems
that would not be possible without digital sys-
tems: diagnostic systems that can display the
health of all the major subsystems and "expert
systems" that provide the pilot with informa-
tion on the various options available during a
particular mission.

In summary, one can say that computers and
software have introduced a whole new dimen-
sion to our weapon systems; improved system
performance: become an aid to the decision
making process; expanded the capabilities of
the human operator and in many cases

Chapter 2 Introduction to Computer Resources

replaced the human operator. In short, they
have dramatically enlarged the performance

envelope of weapon systems far beyond what
was possible less than 30 years ago.

Without modern computers and the as-
sociated software, modern weapon systems
would not exist. Weapon systems have
evolved from systems where computers
played a very minor role to systems where
their very existence depends entirely on com-
puters.

2.5 WEAPON SYSTEM SOFTWARE

The discussions so far have centered on the
computers and the software that are em-
beddedinaweaponsystemand are anintegral
part of that system. There is, however, a
whole host of software associated with every
weapon system (Figure 2-7) that is not em-
bedded in the system but is, nevertheless, ab-
solutely essential.

! /EATA ™
¢ REQUCTION
\ SOF-‘rWARE ’\\
FLIGHT MAINTENANGE
SOFTWARE ‘ < TRAINERS)
_ SOFTWARE
’ g
S \‘ T
<" MiSSION ™ [el ' SCENARIO/
(PREPARATION | g /"::*\,4 ANALYSIS)
- SOFTWARE T \ SOFTWARE -
......... - K4 ~ N
TN f 7 BATTLE
< _ATE/TPS) <MANAGEMENT
. SOFTWARE] == SOFTWARE .
et T CREW T el e
““““ TRAINING B T
SOFTWARE /

Fig. 2-7 Weapon System Software

The software that has been discussed so far is
referred to as flight software but a wealth of
other software is required to support a
weapon system. During ground and flight
testing, extensive data reduction computers
andsoftware are required to aid in the analysis

of literally millions of data points generated
in a major test program.

In c.der to train the various maintenance
crews, various subsystem trainers rust be
developed many of which require literally
hundreds of thousands of lines of code and
numerous computers, both large and small.
Two examples are avionics maintenance
trainers and weapons load trainers. Opera-
tional analysis personnel require very large
scenario software to perform tactics and war
planning. Extensive and complex battle
management software may be required to
develop mission planning. Operational crews
usually train on large software intensive
weapon system trainers whose functions are
dependent on millions of lines of software
instructions. For logistics support of
electronic equipment, automatic test equip-
ment (ATE) and its associated software must
be developed along with hundreds of software
packages called Test Program Sets (TPSs).
TPSs allow technicians to isolate and repair
failed electronic components. Lastly, mis-
sion preparation software may also be re-
quired for use by operational crews in
planning and carrying out their missions.

2.6 CURRENT STATE OF AFFAIRS

Examination of the current state of affairs
with military weapon systems reveals some
very unpleasant facts:

(a) Most new systems are extremely complex.
Thisis due to a combination of several factors:

- extremely demanding requirements, which
tend to drive designers towards complex solu-
tions;

- tight schedules and even tighter budgets,
which tend to negate elegant and simpler
solutions;

- and, unfortunately, too many contractors
not fully skilled in software engineering tech-
niques tend to populate the "lowest bidder"
category. These contractors seem to thrive
under our current procurement laws and
regulations.

(b) Digital systems are now the heart and soul
of all new weapon systems. The flexibility
offered by digital systems cannot be remotely
approached by analog systems. This trend will
continue for the foreseeable future.

(c) Most systems are delivered late, have cost
overruns, rarely meet performance require-
ments upon initial delivery and are often
ridiculously expensive to maintain.

It would be very unfair to blame all of these
unpleasant facts just on digital systems and
software, but it is generally recognized that
software is a major contributor, and often the
only contributor, to these problems. Software
has become the Achilles heel of weapon sys-
tems. Not only is it in the critical path of the
system development process but system per-
formance is dependent on the system
software.

2,7 HISTORICAL CONTRIBUTORS

One of the major contributors to the problems
associated with software development has
been loose and very often nonexistent
management oversight. Since most program
managers know little or nothing about
software, they concentrate their efforts on
hardware or system issues and often leave
software management to managers who are
not always part of the mainstream decision
making process. They get involved only when
software starts affecting the overall schedule
and by then it is usually too late. This is
changing because a policy of "benign neglect”
is no longer acceptable.

Chapter 2 Introduction to Computer Resources

Another problem is that some software
managers lack relevant experience. This is a
universal problem with no quick solutions in
sight. Experienced software managers within
the government are a scarce commodity. In-
dustry seems to lure the good ones away and
those that remain and rise to management
positions are not necessarily the most ex-
perienced.

A major problem that has plagued the DOD
in the past has been the uneven application of
standards and, in some cases, the lack of
standards. As for the former, too often a con-
tract simply calls out all the applicable stand-
ards without regard to the fact that many of
them are contradictory or even unnecessary.
All standards and regulations should be
tailored for each program. It wasn’t until
recently, that common programming stand-
ards were mandated for all the services.

Throughout the 1960s and 1970s the total
number of programming languages used for
military systems numbered in the hundreds
and none of them were compatible with each
other. Most systems used their own languages
and their own computers so that transpor-
tability across systems was nonexistent. To a
great extent many systems still suffer from this
problem.

Another contributor to the software problem
has been the almost endemic lack of a dis-
ciplined engineering approach to software
development. The better developers have the
necessary discipline to do a good job buteven
they encounter problems. Unfortunately,
many software developers only pay lip service
to using modern software development
methodologies such as top-down structured
design, object-oriented design (OOD), in-
cremental development, software metrics,
stringent configuration management prac-
tices, and integrated software engineering en-

Chapter 2 Introduction to Computer Resources

vironments. They may write convincing
proposals but they can’t always deliver. On
the government side, the problem is com-
pounded when the contractor is not forced to
follow a disciplined engineering approach.
Too often, engineering discipline is sacrificed
to those holiest of sacred cows--schedule and
COSt.

Somewhat related is the fact that competent
software developers are not sufficient in num-
bers to satisfy the demands of both the
military and the civilian market place. There
are more software projects than there are
competent software developers, so the less
skillful fill the vacuum.

Lastly one must remember that the software
that is developed for weapon systems is the
most difficult and most challenging type of
software. Some of the reasons for this dif-
ficulty are the following:

(a) Most weapon systems have real-time re-
quirements which add an additional level of
complexity. The software has tn respond al-
most instantaneously and correctly, in spite of
noise and other types of interference that can
seriously degrade a system.

(b) Most weapon systems have a requireme.:t
for fault-free operation or some level of fault
tolerance. This adds additional overhead to
the software since more checks and redun-
dant capabilities have to be added. These
requirements run counter to the require-
ments for speed, simplicity, and real-time
response.

(c) Because of the complexity, many software
developments stretch over periods of three to
five years. Luring this time there is usually
significant personnel turnover, especially in
the government. This results in loss of con-
tinuity and provides ample opportunity for

new "shakers and movers" to express their
leadership and managerial "styles". It also
provides plenty of time for Congress to cut,
slice, batter and reap havoc with the budget.
Although this is also true for hardware, it has
a more severe impact on software develop-
ment,

(d) Requirements are usually not finalized
until late in the development cycle. This is
partly due to the evolving threat and partly
due to the long development period. The end
result is that designers are shooting at a
moving target.

(e) No human endeavor is entirely free of
politics. The program office is no exception.
A program manager must not only deal with
management and technical problems but also
learn to navigate the more dang: rous waters
of internal and external politics.

(f) Compounding the problem even further is
the sad reality that computer resources tech-
nology is rapidly changing. Technology that is
state-of-the-art at the beginning of a major
weapon system develcpment is often obsolete
by the time the system is fielded. A program
manager must be able to properly balance the
risk associated with using technology that is at
the cutting edge, but which is not yet fully
proven, with the risks associated with using
more proven but less capable technology.

2.8 MANAGEMENT GUIDANCE

Program managers, as well as software per-
sonnel, need to be educated and trained. The
Program Managers Course at the Defense
Systems Management College is an example
of this type of training. This education and
training must be made available to all pro-
gram office personnel. Even if one is not
directly involved with software, that person
should still have an appreciation for the dif-

ficulties involved since all future hardware
development will be impacted by software.
Program managers must allow their software
personnel to attend courses and seminars so
that they can better learn the process. This
training is especially valuable for junior and
middle level software managers and en-
gineers, many of who have little or no formal
training in software engineering. Program
managers must never use the excuse that "we
are too busy to let them go now." They will
always be too busy. Make the time and let
program personnel attend training classes.

All program personnel must lose their fear of
software. There is nothing magical about
computers and software as long as time is
taken to learn at least some of the basics.
Software and computer illiteracy can no
longer be tolerated in a program office.

Software and hardware standards should be
intelligently applied. They should be
scrutinized and tailored to a specific program.
Most standards are written to cover the entire
waterfront and particular programs only deal
with a portion of that waterfront. Failure to
do so will create confusion and will eventually
impact those sacred cows--s.chedule and costs.

From day one, program managers must pay
attention to software and ensure that program
personnel are doing the job of enforcing the
developerto follow a disciplined process. The
chief software person must be made visible by
having to report to the program manager on a
weekly basis and on a daily basis during criti-
cal periods. This person should be totally
aware of all of the developer’s major activities
and have the facts readily available.

The program manager must make absolutely
sure that program personnel actuallv read and
critically evaluate all software documents

2-9

Chapter 2 Introduction to Computer Resources

submitted by the developer. If they are rub-
ber-stamping documents, they should be
replaced. Reviews such as Preliminary Design
Reviews (PDRs) and Critical Design Reviews
(CDRs) should be delayed until the proper
documents have been thoroughly reviewed.
A developer should not be allowed to slip
through a gate until it has satisfied all the
requirements for going through that gate; or
until everyone is fully aware of the risks in-
volved by proceeding.

As will be seen in a later section of this guide,
early and thorough planning is the only way
that the software problems can be minimized.
This planning starts during the concept ex-
ploration/definition phase and continues to
some degree until the system is no longer
used.

There are no magical solutions! Good
software development requires extensive
planning and thorough vigilance. There are
no short cuts or cookbook solutions!

2.9 REFERENCES

1. Fairley, Richard E., Software Engineering
Concepts, Tyngsboro, Mass.: McGraw Hill
Book Co., 1985.

2. Grove, H. Mark, "DoD Policy for Acquisi-
tion of Embedded Computer Resources,”
Concepts, The Journal of Defense Systems Ac-
quisition Management, Autumn 1982, Volume
5, Number 4.

3. Boehm, Barry, "Software Engineering,"
IEEE Transactions on Computers, Vol. C-25,
No. 12, December 1976.

4. Fox, Joseph M., Software and Its Develop-
ment, Englewood Cliffs, NJ, Prentice-Hall,
Inc., 1982

Chapter 2 Irtroduction to Computer Resources

5. Electronics Industries Association, The 6. Seidman, Arthur H. and Flores Ivan, Ed.,
Military Market: Perspectives on Future Oppor- The Handbook of Computers and Computing,
tunities, Sponsored by the Requirements New York: Van Nostrand Reinhold Company
Committee, Government Division, Nov 1985. Inc., 1984.

2-10

CHAPTER 3

Chapter 3 Technical Foundations

TECHNICAL FOUNDATIONS

3.1 INTRODUCTION

This chapter addresses the basics of computer
hardware and software by describing how a
computer works and by defining the concepts
of computer programs and languages. These
basics are intended to provide the uninitiated
with an understanding and appreciation for
why a software development project must fol-
low a logical and proven process.

This chapter also provides a brief technical
description of the Ada Programming Lan-
guage and a brief explanation of its technical
and management benefits.

3.2 INSIDE THE COMPUTER

In general terms, a computer is a device which
receives or "senses" data through input
devices, processes that data and provides an
outputinthe form of information or an action.
This is illustrated in Figure 3-1. Incoming
data can originate from a human operator,
external sensors, or computer models which
simulate the external environment.

3-1

The incoming data is processed by a computer
programwhich is a set of instructions and data
that were previously loaded and stored in the
computer. The details of how these instruc-
tions and data are generated and stored in the
computer are discussed later in this chapter.

+ RECEIVES INPUT DATA
« PROCESSES DATA
INPUT == - P OUTPUT
+ OUTPUTS INFORMATION
* PERFORMS ACTION
- DATA + INFORMATION
+ SENSORS + ACTIONS
* MODELS * SIMULATIONS
PROGRAM
+ INSTRUCTIONS
. DATA |
S

Fig. 3-1 Computer Definition

Once the data has been processed, the com-
puter provides information to a human
operator; performs a particular action such as

Chapter 3 Technical Foundations

turning on an actuator or updating a data
base; or provides processed data to a com-
puter simulation as part of its own input data.

The major components of a computer are thie
input and output (I/O) section, the central
processing unit (CPU) and the memory unit
as depicted in Figure 3-2.

3.2.1 Input/Qutput Section

For the computer to be a useful device, it must
be able to communicate with people or
devices outside itself. This is accomplished
through input and output devices. Examples
of input devices are terminals, keyboards, and
sensors such as navigational instruments, al-
timeters, fuel level sensors, and temperature
sensors. Examples of output devices include
printers, displays, actuators, and electro-
mechanical devices that are part of the
weapon system. Sometimes the two functions
are combined as they are on a terminal which
includes a display screen and a keyboard as-
sembled into a single unit. In short, it is the
computer 1/O that provides the interface to
the rest of the system.

3.2.2 Central Processing Unit

The central processing unit is the brain of the
computer, Itis in the CPU where the actual
processing or computations take place. The
processing is based on the computer program
or set of instructions which have been stored
in the computer’s memory.

As an example of the type of processing to be
performed by a CPU, consider an aircraft
avionics system which uses an inertial plat-
form and a computer program stored in
memory to perform the navigational function.
An inertial platform is a device that utilizes
gyroscopes to maintain a fixed attitude with
respect to some external reference, usually

ro

the stars, and accelerometers for measuring
acceleration. The process of navigation would
involve the following: Step 1: Begin the
process. Thiswill require some housekeeping
and initializat'on to tell the computer the ini-
tial starting position and the direction in
which the platform is pointing. Step 2: Obtain
input data from the navigational sensors, i.e.,
the accelerometer outputs and the gyroscopic
attitude output. Step 3: Compute current
position and velocity based on the internally
stored program. Step 4: Output this informa-
tion to the operator and/or guidance system.
This process will be repeated at regular inter-
vals to provide a continuous flow of naviga-
tional information. For the output to be
timely, the process needs to occur in real-
time.

The CPU is in control during the entire time
itis executing these instructions. Step 3 above
processed the datareceived fromthe platform
to produce the necessary information. In this
case, the computation involved determining
the change in direction relative to the refer-
enced stable platform and calculating the
velocity by numerically integrating the ac-
celeration over time. By performing this
process in real-time and providing a con-
tinuous output, the aircraft’s position and
velocity will be known at all times

CPU
EXTERNAL
WORLD

A

i

’)\

INPUT/

i 1!‘.
OUTPUT ::< >‘.,‘ MEMORY i

Fig, 3-2 Computer Components

3.2.3 Memory Unit

The third major component of the computer
is the memory unit. One of the important
aspects of a computer is the ability to store in
its memory the instructions and data required
for the computer to perform its functions. By
storing different instructions and data, the
computer can perform many different tasks
within the bounds imposed by the system’s
design and implementation. In the previous
example, a set of instructions stored in
memory allowed the computer to perform
navigational computations. Using a different
set of instructions, the computer could be
used to determine the status of the hardware
components of the entire system. This as-
sumes that the appropriate input data is
provided by the various subsystems. The com-
puter has the capability to perform these func-
tions and many more. This ability to store and

SRt
R0y %

Chapter 3 Technical Foundations

execute programs provides considerable
power. During execution of a program, the
computer fetches an instruction out of
memory, performs that insiruction and then
steps to the next instruction. This continues
until all the instructions have been per-
formed. The main or internal memory is lo-
cated within the computer, but memory can
also be located externally in memory devices
such as fixed disks, or tape drives, Internal
memory is limited in capacity so external
devices, which have more capacity, are used
for long term storage of large programs and
data.

3.24 Computer Hardware

Computer hardware comes in many shapes
and sizes. Figure 3-3 shows Texas
Instruments’ MIL-STD-1750A computer,
which is used in integrated avionics applica-

9 O Lo, -

R
KRt

At

Fig. 3-3 TI's MIL-STD-1750 Military Computer

3

-3

Chapter 3 Technical Foundations

tions such as the Navy’s Advanced Tactical
Aircraft (ATA), the Air Force’s Advanced
Tactical Fighter (ATF), and the Army’s
Abrams M1IMA Tank. About the size of a
bread box, its performance is comparable to
the original IBM personal computer.,

A much larger system is shown in Figure 3-4,
This system is IBM’s Reduced Instruction Set

Architecture (RISC) System/6000
FOWERstation 320 computer and it is much
more powerful and larger than the MIL-STD-
1750A computer.

3.3 COMPUTER RESOURCES

Now that the computer basics have been in-
troduced, it is time to address the bigger pic-

L LU R

Fig. 3-4 IBM RISC System/6000 Computer

3

4

ture of what is referred to as computer resour-
ces. All too often important aspects of a
software project are arbitrarily relegated to
positions of insignificance because their im-
portance is not understood and, therefore,
receive little or no program management at-
tention until it is too late. To preclude this
from happening, program managers (PMs)

SOFTWARE FIRMWARE HARDWARE
e .,1
INPUT A [01 10100 s 1.
INPUT B {1110001 | B g
C= A+B 1000011i OGO 0g
e
A
T
!?:—]l
A
PRODUCT vf,f;! .
i 4 N
SPEC i
W
I Y
PAPERWARE PEOPLEWARE

Fig. 3-5 Computer Resources

must be familiar with all the components that
make up and support a computer system. Only
by fully understanding all the pieces of the
puzzle, can PMs properly manage computer
resources. This doesn’t mean that PMs must
have detailed knowledge of a computer
processor’s operation or have the ability to
generate software code for projects. PMs
should, however, have a basic understanding
of computer resources and know how these
resources fit into the overall weapon system
architecture. The components of computer
resources are shown in Figure 3-5.

33.1 Embedded Computer Hardware

In weapon systems, the program manager
needs to be concerned with mission critical
computer resources as defined in Chapter 2,
Generally, a weapon system is designed with
a special purpose computer because of

Chapter 3 Technical Feundations

weight, power, application, or other technical
considerations. The special purpose com-
puter or processor may take the form of a
"blackbox", an assembly of cards, or even a
single card which is embedded in the system.
This means that the computer is an integral
part of the weapon system.

Withtoday’s Very High Speed Integrated Cir-
cuit (VHSIC) technology, a computer can be
built on a single integrated circuit, a piece of
silicon not much larger than a 1/4 by 1/4 inch
square. To the untrained eye, an embedded
computer system may be physically indistin-
guishable from the rest of the system. An
example would be a computer used in the
flight control system of an air-to-air missile or
tlie navigational computer in a satellite.

3.3.2 Software

Software is defined by the Federal Acquisi-
tion Regulations (FAR) as the set of instruc-
tions and data that are executed in a
computer. This definition clearly distin-
guishes data items, such as documentation
and specifications that are called out in the
contract, from the deliverable software such
as an operational flight program. Although
some common definitions of software often
include all the documentation as well, the
DOD definition includes only the executable
form of the instructions and data. Software is
not something you can touch or feel. It is
intangible: it has no mass, no volume, no
color, no odor, no physical properties. It can
only be represented by alisting or other forms
of documentation. Software will be ad-
dressed in greater detail later in this chapter.

3.3.3 Firmware

The evolution of computer hardware has also
brought about the marriage of hardware and
software in a combination called firmware.

Chapter 3 Techuical Foundations

Firmware is defined as software that has been
implemented in hardware using memory
devices such as read only memory (ROM),
programmable ROM (PROM), erasable
PROM (EPROM), and electrically erasable
PROM devices (EEPROM). These devices,
and other similar devices which are generical-
ly referred to as integrated circuits (ICs),
allow software to be permanently imple-
mented and not easily changed. In order to
change software implemented in firmware,
one of two actions must be taken. If the
firmware is ROM or PROM, then these
memories or ICs must be physically removed
from a circuit card and replaced with other
ROMs or PROMs that have been
programmed with the new software. If the
firmware is EPROM, then the ICs must be
removed, reprogrammed, and reinstalled.
The EEPROM can be altered in circuit but
this requires special additional equipment or
circuitry. The EPROM isusually altered using
an ultra-violet light source and the EEPROM
can be altered using eiectrical means.

Because of the difficulty encountered in
changing software that has been implemented
in firmware, firmware is used only in applica-
tions that:

Require Speed - Muny signal processing
applications, such as electronic warfare sys-
tems, must receive, analyze, categorize and
jain radar signals from hostile threats almost
instantaneously. They cannot tolerate the
relatively slow processing speeds associated
with general purpose computers. In these
cases the various algorithms or programming
steps are implemented in firmware in order to
significantly increase the processing speed.

Require protection from unauthorized
tampering or alterations - The software re-
quired to run a computer is oftentimes stored
in firmware. By using these devices, com-

puter manufacturers preclude programmers
from inadvertently changing the resident
software, commonly referred to as the operat-
ing system software, and possibly causing the
computer to fail or to operate improperly.

Require permanent software - Programs
that have been implemented in firmware are
immediately available in memory and do not
have to be loaded when the computer is first
powered up. This also provides a form of
protection from power failures. A thoroughly
tested and stable program is a good candidate
for firmware.

Firmware introduces an additional dimension
to software. Because it is software, all the
software configuration management practices
also apply to firmware. Once the software is
implemented in firmware, however, the I1Cs
are managed as hardware configuration
items. Inorder to provide for future support,
a method must exist which traces the specific
software version to a unique piece part.

3.3.4 Peopleware

People are also an important part of the sys-
tem. The program manager tries to satisfy the
user’s need through a reasonable system
design, butitis the user and support personnel
who are the ultimate judge of the delivered
product’s quality. This is why it is important
that the program manager involve the user in
defining requirements, in evaluating test
results, and interpreting system interface re-
quirements. Other chapters will address the
importance of involving the user and support
personnel in the development process.

3.3.5 Documentation
Because software development is largely an

intellectual exercise, documentation is vital
for communicating during the software

development and support phase. Documenta-
tion must be a logical by-product of the
development process. As software develop-
ment tools and computer programming lan-
guages become more sophisticated,
documentation will become more and more
of an automatic by-product of the develop-
ment process. Until then, however, the pro-
gram manager must insure that adequate
documentation exists to accommodate

HOST COMPUTER
{}_..‘dl l‘f.:?";;‘.‘ I el "l

'41-4_,—;}! E“J“‘ N

| i
! |
|

1l
;
e

& Lo
OPERATOR'S
CONSOLE

—

N
sy, Py a3

|]' |

T

|

S
iy i e, Sy
Work Work Work Work
Station Station Station Station

Fig. 3-6 Support Facility

development and follow-on support. It is im-
portant to remember that software is intan-
gible, with no physical properties, and that
documentation is the only means available for
describing and keeping track of its develop-
ment progress.

3.3.6 Development/Support Facilities

A computer system consists of hardware,
software, firmware, peopleware, and paper-
ware as indicated in Figure 3-5. All these
elements, which are brought together in a
support facility, must be available during the
development and support phases of the
weapon system. The support facility is an im-
portant aspect of computer resources, It in-

Chapter 3 Technical Foundations

cludes not only the physical property, such as
the building, host computers, and utilities, but
also the supporting software documentation
needed for development and support. A
software development facility and a software
support facility are virtually identical since the
same software and hardware tools are re-
quired for both. The facility may consist of a
host computer, which may be either a large
mainframe computer or a minicomputer,
along with terminals or work stations for the
programmers, analysts, testers, librarian, and
other personnel (Figure 3-6). The facility miay
also be connected to other similar facilities
through local area networks (LANs). Inorder
to perform software development and sup-
port, several software programs are required.
These programs include compilers, linkers,
loaders, simulators, editors, and other
development and management tools.

34 COMPUTER ARCHITECTURE

The computer can be thought of as a collec-
tion of hundreds of thousands of electrical
switches. Each of these switches canbe inone
of two states, on or off. Since the switch has
two states, the status of any one "witch can be
represented by a "0" ora "1", i.e.,, on = [and
off = (). The binary numbering system can be
used to represent the state of these switches
since it too has only two digits, 0 and 1. Instruc-
tions and data can therefoie be represented
by a string of 0s and 1s and by vusing the rules
of Boolean logic, named after the English
mathematician and logician George Boole.
These switches are interconnected to build
modern electronic computers. Modern com-
puters, no matter how large or how small,
perform the following basic types of opera-
tions or instructions:

ARITHMETIC
add multiply
subtract divide

Chapter 3 Technical Foundations

LOGICAL

AND NOT

OR EXCLUSIVE OR
TRANSFER CONTROL

branching subroutines loops
DATA MOVEMENT

load store move
INPUT AND OUTPUT

in out
SYSTEM

HALT interrupt

3.4.1 Bits and Bytes

In the binary numbering system a bit repre-
sents one digit, either a"0" ora"1". Awcrd s
a string of bits that represent instructions or
data; the larger the string the more informa-
tion it can represent. Any character can be
represented by using "coding" techniques.
One widely used technique is the American
Standard Code for Information Interchange
(ASCII) which is used for encoding the al-
phabet, numbers, and other special charac-
ters. There are 128 characters in the ASCII
set, while another widely used technique, the
IBM set, has 256 characters. As an illustra-
tion, part of the ASCII alphabet and number
coding scheme is shown in Figure 3-7.

Notice that the ASCII standard uses eight bits
or digits to represent a character. This eight
bit word length is commonly referred to as a
BYTE and was usually the smallest word size
in earlier computers, particularly in personal
computers (PCs). The eight bit structure of
PCs has been replaced by the 16 bit word, with
32 bit structures quickly taking their place.
Large mainframes have always used larger
word sizes such uas 32 or 64 bit word lengths.
The advantage of a larger word length is that

3-8

it contains more information in a single word
and can access larger segments of stored data.
A computer architecture is designed around a
specific word size since the internal com-
munication between the CPU, memory and
I/O is dependent on the number of bits in a

DECIMAL
CHARACTER BINARY CODE EQUIVALENT
0 00110000 48
1 00110001 49
2 00110010 50
3 00110011 51
A 01000001 65
B 01000010 66
C 01000011 67
D 01000100 68
E 01000101 69
F 01000110 70

Fig. 3-7 ASCIU Alphabet (Partial)

word. For example, a computer that has an
eight-bit architecture (8 bit buss) communi-
cates eight bits at a time (in parallel) while a
16-bit machine communicates 16 bits at a
time. This effectively doubles the throughput.

3.4.2 Instruction Set Architecture

The computer architecture and its internal
logicstructure are designed and implemented
oy the computer manufacturer to perform a
finite and fixed set of instructions. A com-
puter with a minimal set of instructions can
perform the same computations as one with a
larger set. The difference, however, may ap-
pear in the execution time and the sequence
of instructions in the software program. Let’s
assume that a programmer is required to
generate a computer program to perform a
particular task. A program written for a
machine with a large set of instructions will
usually require fewer lines of machine in-
structions than a program written for a
machine with a smaller set of instructions.

The difference in actual machine instruction
sets is dependent on the manufacturer’s ob-
jectives in design. Computers can be
designed and optimized for specific applica-
tions. Some computers are designed to per-
form very rapid mathematical computations;
others are designed to manipulate large
amounts of data in a very efficient manner;
and still others are designed with a very
powerful graphics capability. No computer,
however, can be built so that it can perform
equally well in all applications. There is no
industry standard for computer design and
each manufacturer is free to design and target
its machine for the application of its own
choosing. This means that each computer has
its own internal and fixed repertoire of in-
structions. This fixed set of instructions is
called the computer’s instruction set architec-
ture (ISA) and in order to execute a computer
program on a particular machine, that pro-
gram must be specifically targeted or written
for that machine’s ISA. In other words, the
binary instructions and data that make up a
software program are different for computers
with different ISAs. Instruction set architec-
tures are the "blueprints" that describes the
interface to the set of electronic hardware or

circuitry to execute the different types of

operations or instructions.

Word size is an important part of the com-
puter architecture. Recall the earlier discus-
sion on the communication of instructions
and data within the machine. Partof the basic
design is determining the internal signal com-
munication paths, This internal communica-
tion is accomplished through the use of an
electronic component called a buss. The buss
provides parallel signal paths between the
CPU, memory, and external devices, A com-
puter will typically have two busses as shown
in Figure 3-8. The design architecture will
also determine the internal communication
within a computer. A computer that has a 16-

3-9

Chapter 3 Technical Foundations

bit architecture communicates internally 16
bits at a time (in parallel). A computer that
has a 32 bit architecture communicates 32 bits
at a time. This effectively gives the computer
with 32 bits a greater throughput or faster
execution capability.

Although there are no official standards for
commercial hardware designs and computer
archiiectures, the surge of sales in personal
computers has made de facto standards of
some Intel and Motorola computer architec-
tures. Within the DOD, however, there does
exist a standard for ISA, namely MIL-STD-
1750A. This standard has been used success-
fully inboth Air Force and Navy programs but
its application is usually limited to airborne
and embedded computer applications. This is
because this ISA was initially designed by the
Air Force in the 1970s around a 16-bit word
size. It was specifically intended for airborne
applications and it has a limited memory
capacity. Today’s rapidly evolving computer
technology is quickly making MIL-STD-
1750A ISA obsolete. The advantage of
standard ISAs is portability of executable
software.

3.5 SOFTWARE LANGUAGES

Software languages are the vocabulary or lex-
icon used to instruct computers on the func-

ADDRESS BUSS

SOAN A RS MM OAS AR AL S S At |
‘t CONTROL. || SIGNALS ;
X
INPUT
& ! CcpPU - MEMORY
QUTPUT
[J S

4 ﬂl

DATA J BUSS
 J L4

Fig. 3-8 Computer Busses

Canapter 3 Technical Foundations

tions they will perform. Software languages
can be categorized into four groups: machine
languages, assembly languages, higher order
languages, and application generators.
Software languages are also referred to by
generation, with machine language being the
first generation and application generators

being the fourth generation languages
(4GLs).

3.5.1 Machine Language

Machine language is the most primitive and
basic of all the languages and the only lan-
guage that can be used in a computer. It is
written in binary code and provides the
machine the instructions it is to execute. The
binary coded words are those words that were
designed for the machine’s ISA. Program-
ming in machine language, forces the
programmer to structure the problem solving
steps in the same way the machine will ex-
ecute them. When computers were first in-
troduced, that was exactly how engineers
constructed their computer programs. Since
data, instructions, and memory locations are
represented by Os and 1s (See Figure 3-9), this
method is very tedious and error prone and
becomes nearly impossible for practical

problems. In addition, because every com-

11010000 00001100 00000101 11000000
01010000 11010000 11000000 00111110
01000001 11010000 11000000 00111010
01011000 01100000 11000000 10000010
01000001 10110000 00000000 Q0000000
01000001 00110000 00000000 10000110
01011010 10110011 00000000 00000000
01000001 00110011 00000000 00000100
01000110 011000C0 11000000 00010100
01011100 10100000 11000000 10100010
01011101 10100000 11000000 10000010
11100001 01100000 00000000 00000000
01011000 11010000 11000000 00111110
10011000 11101100 11010000 00001100
000001 11 11111110

00000000 00000000 00000000 00010000
00000000 00000000 00000000 00100000
00000000 00000000 00000000 00000110
00000000 00000000 00000000 0000000 |

Fig. 3-9 Binary Object Code

3-10

puter has its own unique machine language
and, because of this, machine language
programs are not transferable between dif-
ferent type machines.

3.5.2 Assembly Language

Earlyin the history of computer development,
engineers learned to use the power of the
computer to assist in the programming
process. Instead of directly using binary code,
the engineer developed ashorthand notation-
al language that was easier to understand.
This notational language was called assembly
language. Assembly language represents each
instruction with a mnemonic expression and
data is represented by its equivalent decimal
number. The engineer or programmer still
structures the problem solving steps the same
way the machine executes them; but now the
computer itself is used to perform the trans-
lation from assembly language into machine
language. For example, the assembly lan-
guage program in Figure 3-10 will find the
average of "N" number of grades.

This program now needs to be translated into
the binary code that the machine can execute.
This translation process, known as "assembly",
is performed by another program called an
"assembler"”. The program written in assembly
language is known as the "source” program
and the binary code created by the assembler
is called the "object” program or code. The
assembly language program (e.g., the source
program in Figure 3-10) would then become
the object program shown in Figure 3-9,

The introduction of assembly languages
greatly simplified computer programming
and resulted in an increase in productivity.
Use of assembly language, however, does in-
troduce some inefficiency in execution be-
cause the translation process introduces some
overhead (additional code). The general ap-

Chapter 3 Technical Foundations

F'16,32,442,988,-26,388'

STMT SOURCE STATEMENT
1 AVERAGE CSECT
2 ST™M 14,12,12(13)
3 *THIS PROGRAM FINDS THE AVERAGE OF N INTEGER VALUES*
4 BALR 128
5 USING %12
6 ST 13,SAVE + 14
7 LA 13,SAVE
8 *STANDARD LINKAGE FROM OPERATING SYSTEM*
9 L 8N
10 LA 11,0
11 LA 2,8SE
12 LOOP A 11,0(3)
13 LA 3,4,(3)
14 BCT 6,LOOP
15 M 10,=D'1"
16*
17 D 10,N
18*
19
20 XDUMP
21 L 13,SAVE + 4
22 LM 14,12,12,(13)
23 BR 14
24 SAVE DS 18F
25N DC F's'
26 ADDR DC
27 END
28 =F'1D

REGISTER USED TO INCREMENT
REGISTER 11 USED FOR SUMMING
ADDRESS OF FIRST NUMBER
SUM =SUM + NEXT NUMBER
GET ADDRESS OF NEXT NUMBER

EXTEND SIGN BIT TO HIGH ORDER
REGISTER PAIR

INTEGER PART OF AVERAGE I1S
PLACED IN REGISTER 11 (HEX)
AND REMAINDER IN REGISTER 11

Fig. 3-10 Assembly Language Program

proach to translation employed by an as-
sembler can not always optimize the binary
instructions to be as efficient as binary code
written directly by a good programmer. Be-
cause the assembly language source program
makes it easier to understand and to correct
errors, modifying programs becomes easier
and the benefits accrued from this far out-
weigh the inefficiency introduced by the
translation process.

Assembly language, however, retains an al-
most one for one correspondence with the
instruction set of a particular machine. This
means that every machine instruction set has
a different assembly language. When
programming in assembly language, the
programmer has to tailor the problem solving
steps to the particular machine’s repertoire of
instructions. This dictates a unique assembly
language for every machine. Because of this
uniqueness, assembly language programs are

not transferrable among different types of
machines.

3.5.3 High Order Language

The next advance in programming occurred
with the introduction of higher order lan-
guages (HOLs). HOLs use statements that
are more English-like, easier to understand,
more productive, easier to support, and less
dependent on the computer design. Ex-
amples of higher order languages are
COBOL, FORTRAN, Pascal, and Ada. The
COmmon Business Qriented Language
(COBOL) was created in order to help the
business community manage large amounts of
data. FORTRAN, which is an acronym for
FORmula TRANSslator, was developed for
scientists and engineers and allowed the crea-
tion of mathematical algorithms and
programs without the need to know the details
of a particular computer ISA. Although these

3-11

Cthapter 3 Technical Foundations

languages can be used in applications other
than those they were designed for, they have
found their broadest application in the
domain they are best suited for, namely scien-
tific and business applications respectively.
Different problem domains have created the
need for new languages tailored to the
peculiarities of that problem solving process.
As a result of this need, hundreds of HOLs
have been developed.

As with assembly language, a higher order
language must be translated into a particular
machine code. This process of translation is
called "compiling" and the translator is a
software program called a compiler. A com-
pileris generally alarge and complex program
that translates the HOL source program to
the machine executable object program. Be-
cause the object program is machine depend-
ent, the compiler translation is also machine
dependent. That means that each different
computer must have its own unique compiler.

Compilers are typically designed with the
flexibility for translating HOL source code to
many different machines. This is done by
designing the compiler with a front end and a
back end. When the translation is being per-
formed, the source program instructions are
first processed by the front end to create a
program in a generic intermediate assembly-
like language. This front end process is the
most difficult part of the translation. The
second step is to process this intermediate
program with the back end of the compiler.
The purpose of the back end, or code gener-
ator, is to translate the intermediate code into
the machine language of the "target" com-
puter (the one that will actually execute the
program). The code generation process of a
compiler is similar to an assembler. To trans-
late to different target computers, the
developer has to build the unique code gen-
erator for that particular target computer and

3-12

the front end, which is the toughest to
develop, remains unchanged. In industry,
once the first compiler is developed, sub-
sequent compilers for different machines can
be quickly constructed. A partial Ada pro-
gram for the previous programs sho'vn in Fig-
ure 3-9 and Figure 3-10 is found in Figure
3-11.

3.54 Application Generators (4GL)

All the earlier languages, including the high-
order languages, are classified as "procedural”
languages. The user must define in detail the
sequence of operations required to solve a
particular programming problem. A more
recent development in programming technol-

with TEXT_1O; use TEXT_IC;
with GRADE_PACKAGE; use GRADE_PACKAGE;

procedute AVERAGE _GRADES is

NEXT_GRADE : GRADE_PACKAGE.GRADE;
THIS_HISTORY : GRADE_PACKAGE.GRADE_HISTORY;
GRADE_COUNT : NATURAL := O; -- number of grades to enter

package GRADE_IO is new INTEGER_IO (GRADE_PACKAGE.GRADE);
package NATURAL 10 is new INTEGER_IO (NATURAL);

begin
put (‘Enter the number of grades: °);
NATURAL_1O.get (GRADE_COUNT);

while GRADE_COUNT > 0 loop
begin
put {'Enter grade: *);
GRADE_{O.get (NEXT_GRADE);
skip_line;

GRADE_PACKAGE.ADC (THIS_HISTORY, NEXT_GRADE);
GRADE_COUNT : = GRADE_COUNT -1;

exceplion
when DATA_ERROR = >
put_line ('Not a valid grade; please enter oniy INTEGERS '
& 'between’ & INTEGER 'image (GRADEfirst)
& '..' & INTEGER'image (GRADE'las!));
skip_line;
end;

end loop; --finished getting grades
put ('The Average is:’);

GRADE _I0.put (GRADE_PACKAGE.AVERAGE (THIS_HISTORY));
new_line;

Fig. 3-11 Ada Program

ogy, called application generators or fourth-
generation languages (4GLs), can greatly in-
crease programmer productivity. A 4GLs
allows an end user to build applications
programs without resorting to coding the
details in a particular computer language.
Since most application generators are non-
procedural, they allow the programmer or
user to define the problem while the system
defines the steps required to solve the prob-
lem.

To make the distinction between the proce-
dural and nonprocedural languages clearer,
one may use the analogy of providing instruc-
tions to a taxi driver. With the procedural
language one must tell the driver exactly what
to do. "Drive 500 yards due North. Turn left.
Drive 380 yards, etc." With a nonprocedural
language one may say, "Take me to the
Criterion Theater on Main Street." The most
powerful nonprocedural languages may per-
mit one to simply say, "Take me to see Gone
With the Wind." The taxi driver will then
search theater listings to determine where the
movie is playing. In this case the taxi driver
might say that the request is illogical, if the
nearest theater at which this movie is playing
is in another city or state.

Fourth-generation languages vary greatly in
their power and capabilities. While some
fourth-generation languages can be used to
create complete applications, many are report
generators or graphics packages. Most are
dependent on a well-defined data base, and
are designed for only a specific class or range
of applications. Vendors of the more com-
prehensive products describe their more
limited competition as "not true fourth-
generation languages." However, it is often
better to use a language designed for a limited
set of functions because it is easier to learn
than a full programming language. Lotus 1-2-
3 is a good example of this kind of language.

3-13

Chapter 3 Technical Foundations

This language has gained a vast number of
users because it made it easy to manipulate
spreadsheet data [5).

Fourth-generation languages can be very
beneficial in developing mission support
software; however at the present time there
are few languages targeted toward the em-
bedded computer market. These languages,
in general, tend to develop machine language
that is even less efficient than the machine
language developed by HOLs, which
mitigates against using them to develop real-
time systems.

3.6 ADA

For most DOD applications, policy requires
that developers use the Ada programming
language. This policy will be discussed in
more detail in Chapter 4; however, because of
the widespread implications of the policy, the
program manager needs to know more about
the language and its supporting environment.

3.6.1 Ada Design

The Ada programming language was
designed with three overriding concerns: pro-
gram reliability and support, programming as
a human activity, and efficiency [1]. The resuit
of these concerns was the creation of a lan-
guage that embodies the principles of modern
software engineering practices. Applying
these principles, or tools of the trade, helps
one deal with two very real and difficult
aspects of large-scale software developments:
complexity and change.

Adawas specifically designed to encourage or
help the engineer or programmer develop
software that is reliable and simple to main-
tain. In particular, Ada emphasizes program
readability over ease of writing. For example,
the rules of the language require that program

Chapter 3 Technical Foundations

variables be explicitly declared a particular
type such as real, integer, Boolean, etc. Since
the type of a variable is unalterable, compilers
can ensure that the only operations per-
formed on variables are those allowed by the
rules of the Ada language syntax. This
prevents the programmer from attempting to
perform an illegal operation such as multiply-
ing an integer value with a string variable.
Furthermore, error-prone notations have
been eliminated because the language avoids
the use of cryptic encoded forms in favor of
more English-like constructs. Finally, the
language offers support for separate compila-
tion of program units in a way that facilitates
program development and support.

A major strength of Ada lies in its ability to
perform aumerous checks both during com-
pilation and at run time. The richness of the
syntax makes it more difficult for a program-
mer to code and compile a program, but once
compiled an Ada program is more apt to run
correctly than a program written in any other
language. In other words, Ada enforces a cer-
tain amount of discipline into the program-
ming process. This is a significant
contribution to reliable software.

Concern for the human programmer was also
stressed during the language design. An at-
tempt was made to keep the language as small
as possible by trying to avoid the pitfalls of
excessive complexity. Ada uses simpler
designs to provide language constructs that
correspond intuitively to what the users would
expect.

Like many other human activities, software
programs are becoming larger and their
development is becoming ever more
decentralized and distributed. Consequently,
the Ada designers provided the ability to as-
semble a program from independently
produced software components.

3.6.2 Ada Compilers

No high order language can avoid the address-
ing the issue of compiler translation efficien-
¢y, because a poor compiler can result in poor
run-time efficiency and inefficient use of
storage affecting all machines and all
programs. During Ada specification develop-
ment, every proposed construct of the lan-
guage was examined in the light of current
state-of-the-art compiler implementation
techniques. Any proposed construct wiiose
implementation was unclear or that required
excessive machine resources was rejected [2].
However, there are substantial differences
among validated Ada compilers. To explain
the reasons for these differences, it is ap-
propriate to explain what validation means.
Validation is the official DoD process used to
demonstrate that a candidate Ada compiler
conforms to the Ada language standards.
Relevant policy for validation is documented
in the Ada Compiler Validation Procedures,
Version 2, published by the AJPO, May 1989,
This policy states that Ada compilers must be
validated by the Ada Validation Facility
(AVF) managed by the Ada Validation Or-
ganization (AVO). A compiler will receive
certification if it passes all applicable tests in
the Ada Compiler Validation Capability
(ACVQ) test suite. The test suite, which is
now updated every eighteen months, encom-
passes six different classes of test and includes
more than four thousand individual tests.
While the testing is extensive, the individual
tests tend to test simple capabilities rather
than capacity or synergistic issues. Validation
does not guarantee that the compiler is error
free, nor does it imply anything about the
performance or functionality of the compiler.

Nelson H. Weiderman of SEI states that
"There is an important difference between
validation and evaluation. Validation tests
conformance to ANSI/MIL-STD-1815A.

Validation cannot be relied upon for determin-
ing whether a given Ada compiler is fit for use
ina particular application." Evaluation issues
are covered in the Ada Adoption Handbook:
Compiler Evaluation and Selection [5).

3.6.3 Ada Language Features

Ada has incorporated the following software
engineering features:

Abstraction is a simplified description or
specification that suppresses some of the
details or properties. A good abstraction is
one that emphasizes data that is significant
and suppresses immaterial details. This
facilitates the management of complexity in
software development and maintenance. For
example, a vehicle is an abstraction at a
general level. Ore can provide further detail
to the class of vehicles by identifying an
automobile. Then one can further describe
the various characteristics of an automobile
such as a six cylinder engine, two door sedan
and so on to describe a specific automobile.
This of course can continue down to the smal-
lest component necessary. Notice that each
lower level adds detail.

Information hiding is the technique of
providing only the essential information
necessary for interfacing with a given unit. A
specification control drawing is an example of
information hiding. This type of drawing
provides information on the inputs and out-
puts of a particular device without providing
any details r n the internal structure. This
prevents detailed information from confusing
essential information. Abstraction and infor-
mation hiding assist programmers deal with
complexity.

Modularity is the principle of logical structur-
ing. One decomposes a design through levels
of abstraction so that it has the properties of

3-15

Chapter 3 Technical Foundations

loose coupling and tight cohesion. A module
can be descrit»d as an entity or unit whose
internal elements are tightly bound or related
(cohesion) but with light interconnections
(coupling). In design, one would collect all
logically related resources into one module.
This is the principle of localization,
Modularity and localization help the
programmer to deal with complexity as well
as with change. The effects of change can be
better controlled or isolated through modular
design and localization.

All these features contribute to reliable,
maintainable, understandable, and cfficient
designs. They also allow the programmer to
cope with the complexities of large-scale sys-
tems and the inevitability of change. Ada in-
corporates all of these attributes. The
different concepts embraced by Ada are not
new to programming languages. What is uni-
que is that Ada is the first language to com-
bine all these features into a single language.

There are some unique features provided by
Ada that are not provided by any other
production languages: the package, exception
handling, tasking, and generics.

Packages are entities or collections of related
objects and their operations. This collection
of resources can be viewed as a wall surround-
ing a collection of logically related entities
such as operations, data types, and related
program units [2]. The package enforces the
principles of modularity, localization,
abstraction, and information hiding.

Exception handling provides a controlled way
to exit from an abnormal event. In real-time
operations, one cannot allow an abnormal
event, such as division by zero or a register
overflow, to halt the entire process. Through
exception handling, abnormal events are
flagged during processing and purposefully

Chapter 3 Technical Foundations

handled to prevent a catastrophic failure.
This is done in one of three ways: allowing
execution to follow an alternate path, restart-
ing the operation at a controlled point, or
overriding the current data with default
values. Exception handling is one way of
designing graceful degradation into the
software.

Tasking is very important in real time opera-
tions, Tasking allows concurrent or parallel
processing to occur in the same or separate
processors. In the real world, processes are
generally concurrent. This approach to
design breaks the sequential mindset but is
one of the features of Ada that is most often
criticized. Real-time applications require
fast, reliable completion of tasks whose
priorities are constantly changing; however,
Ada completes each task before starting
another task and Ada fixes priorities at com-
pilation time and is therefore inflexible to the
changing environment or the real world.
Work-arounds are currently available to cir-
cumvent this problem, and this weakness will
be one of the areas addressed when the lan-
guage specifications are updated.

Generics is a feature that reduces complexity
and encourages the production of reusable
code components. The concept of generics is
similar to a template whereby a structure and
associated operations are defined for later use
in specific application. For example, a
generic routine can be created for sorting any
number of items. The process of sorting is
the same whether one is sorting numbers,
names, or objects. In other languages, one
creates different sort routines for each ap-
plication. With the generic capability in Ada,
one routine will suffice. This reduces the need
for multiple programs for performing the
same task. It also aids in dealing with large
complex systems by introducing common
generic packages.

3-16

It is important to understand that Ada
provides a means for achieving good designs
because it embodies principles of good sys-
tems and sottware engineering. It is also im-
portant to know that the Ada programming
language itself is only a small part of the
process of designing sound systems, The
design and development of good software re-
quires more than just a good programming
language. One must still employ sound design
practices and procedures, strong configura-
tion management practices, and good system
design tools and aids. In addition, all program-
mers must be adequately trained on the use of
these methods and tools.

3.6.4 Ada Environment

In the past, software tools were as diverse and
hardware unique as the languages they sup-
ported. The goal of the early developers of
Adawas to develop a total environment which
supported the systems development life cycle.
To achieve portability, the environment is
broken into the Kernel Ada Programming
Support Environment and the Ada Program-
ming Support Environment.

3.6.4.1 Kernel Ada Programming Support
Environment (KAPSE)

The KAPSE contains all low-level features
necessary to rehost onto another system. It
also supports: database access, input/output,
terminal to tool access, and the runtime sys-
tem

3.6.4.2 Ada Programming Support Environ-
ment (APSE)

The APSE typically consists of:
Editor. An interactive tool, preferably one

that is language specific for creating
documentation and source code.

Debugger. A debugger is a programmer
productivity tool for finding errors. It should
be integrated with the compiler to provide
source code information.

Linker. The linker joins together object
modules into executable modules which will
run on the target machine.

Configuration Manager. This tool is used to
keep track of the different versions of the
documentation and code.

Static Analyzer. This tool provides informa-
tion such as number of lines of code, number
of comments, level of complexity, and
measures of coding style.

Dynamic Analyzer., This tool monitors and
reports the execution behavior of object code
so that the programmer can "fine tune" the
system,

Library Management Tools. These are tools
which automatically recompile and relink ob-
ject modules.

Test Tools. Tools to automatically generate
test data and compare actual output to ex-
pected output.

3.6.4.3 Ada Program Design Language

One of the most important tools currently
used for designing software is a program
design language (PDL). The DOD’s policy
concerning PDLs is given in DOD Directive
3405.2, Use of Ada in Weapon Systems which
states:

"An Ada-based program design language shall

be used during the designing of software. Use of

a PDL that can be successfully compiled by u
validated Ada compiler is encouraged in order
to fucilitute the portability of the design."

Chapter 3 Technical Foundations

A PDL is a formal language (sometimes
referred to as pseudo-code) for specifying the
"blueprint” for software implementation.
When Ada is used as a PDL, the properties of
the language allow the "blueprint" of a
software design to be run through an Ada
compiler with the restriction that it doesn’t
execute. This allows the compiler to perform
all the syntactic and semantic checks it nor-
mally performs. No other HOL, currently in
use, has its own PDL, Several Ada-based
PDLs exist. An example of one is IEEE Stand-
ard, IEEE-STD-990-1987.

A PDL is not a panacea for software develop-
ment. Poor software designs can be produced
using a PDL. PDLs, however, have major ad-
vantages which can make the process of
software design, code, test and integration a
less painful process.

3.7 Ada SURVIVAL

It is important to understand that the Ada
programming language is still in a period of
transition, and although the risk of using Ada
is much less than it was only a few years ago,
there are still several factors to consider when
evaluating the risks of using Ada. The
Software Engineering Institute’s publication
entitled Ada Adoption Handbook: A Program
Manager’s Guide [4] provides considerable
detail and suggestions for dealing with Adain
today’s environment. Figure 3-12 contains a
checklist of helpful hints for those embarking

- Get training and experience
- Be aware of Ada's benefits and shortcoming
- Select a contractor with a proven track record
- Select a comipiler based on:

-- characteristics of your application

-- evaluation of compiler periormance

-- evaluation of vendor support services
- Invest in system support tools
- Know your risk and manage it

Fig. 3-12 Ada Survival Checklist

Chapter 3 Technical Foundations

tem development. One must understand that
work-arounds exist for many of the known
deficiencies of Ada.

3.8 REFERENCES

1. ANSI/MIL-STD-1815A, Ada Programming
Language, 22 Jan 1983.

2. Booch, Grady, Software Engineering With
Ada, Menlo Park, The Benjamin/Cummings
Publishing Co. , 1983,

3. Taft, Darryl K., "Revisions to Ada Standard
Expected After Reviews", Government Com-
puter News, Jan 22, 1988,

4. Foreman, John and John Goodenough,
Ada Adoption Handbook: A Program
Manager’s Guide, Software Engineering In-
stitute Technical Report CMU/SEI-87-TR-9,
May 1987.

5. Weiderman, Nelson H. Ada Adoption
Handbook: Compiler Evaluation and Selec-
tion, Software Engineering Institute Techni-
cal Report CMU/SEI-89-13, Mar 1989.

3-18

CHAPTER 4

Chapter 4 Software Acquisition Policy

SOFTWARE ACQUISITION POLICY

4.1 INTRODUCTION

This chapter summarizes the DOD’s policies
governing the acquisition of mission critical
computer resources (MCCR). In dealing with
policy, it may be useful to understand the
history behind its implementation. Towards
that end, this chapter will provide a historical
perspective of the various laws, regulations,
and initiatives that relate to MCCR.

As indicated in the previous chapter, com-
puters and software have become an extreme-
ly vital component of a weapon system. In a
span of only twenty-five to thirty years, the
dependence on software and cost of software
has grown tremendously. With this growth,
there has been an accompanying rise in the
technical and management problems across
all of the services,

4.2 BROOKS BILL

Prior to 30 October 1965, there was no form
of standardization or control over the
procurement of automatic data processing

4-1

(ADP) equipment within the federal govern-
ment, On that date, however, Public Law 89-
306 (otherwise known as the Brooks Bill) was
signed by President Johnson. This bill was
intended to promote competition and insure
stability in the procurement of ADP resour-
ces. By 1976, 36% of the systems were
procured in a fully competitive manner and,
according to the General Services Ad-
ministration (GSA), over $681 million in cost
avoidance has been achieved in 302 competi-
tive ADP contracts [1].

Traditionally, computers and software have
beenviewed by top level management as tools
for improving efficiency and conserving
resources. Although this is true, computer
resources need to be treated in the same man-
ner as other acquisitions, not as mere tools.
Although primarny directed toward the
procurement of ADP equipment, the Brooks
Bill forces federal agencies to analyze their
ADP requirements, like they would for other
systems, and compete for the most economic

Chapter 4 Software Acquisition Policy

and efficient system. In an effort to achieve
this goal, the Brooks Bill assigned respon-
sibilities as follows: the GSA was given the
authority for procuring ADP resources re-
quired by federal agencies; the Office of
Management and Budget (OMB) was to pro-
vide policy guidance and overall leadership
(i.e., they were to act as mediator in resolving
any user and GSA disputes); and the National
Institute of Standards (formerly the National
Burcau of Standards) was to develop ADP
standards.

The Brooks Bill, however, does not permit the
GSA to interfere with an agency’s (user)
determination of its ADP requirements. The
user determines its requirements for ADP
cquipment and the potential method of
procurement. The method of procurement is
then approved by the GSA and any disputes
resolved by the OMB.

The DOD considers MCCR exempt from the
provisions of the Brooks Bill because MCCR
is not specifically addressed in the ADP
definition. Therefore, the DOD has con-
tinued to procure MCCR as part of the
weapon system using major system acquisi-
tion guidelines. Additional legislation in the
form of the Warner-Nunn Amendment and
various DOD Directives and Instructions has
further approved this interpretation.

4.3 DOD DIRECTIVE 5000.29

DOD Directive 5000.29, Management of

Computer Resources in Major Defense Systems
was published on 26 April 1976. Its purpose
was to establisha DOD policy for the manage-
ment and control of computer resources
during the life cycle of major weapon systems.

The directive was the first major step under-
taken by the DOD to address the growing
software problem. It represented the

W]

department’s first formal recognition that
software is critical to weapon systems and
should be managed as a configuration itemin
the same manner as hardware. As such,
software requirements should be validated
and risk analyses performed prior to a Mile-
stone 1l decision in order to insure that the
software requirements reflect the operational
requirements. All of the management tools
used in the development of hardware should
be applied to software (e.g., configuration
management, baseline\milestone manage-
ment, and life cycle support planning tools).

In an effort to help carry out the intent of this
directive, a Management Steering Committee
for Embedded Computer Resources was also
established in 1976 and its charter was con-
tained in the directive. The purpose of the
steering committee is to increase the visibility
and improve the management of computer
resources within the DOD, to formulate a
coordinated technological base program for
software, and to integrate computer resource
policy into the normal process of major system
acquisitions.

The steering committee is composed of two
boards: the Executive Board and the Manage-
ment Advisory Board. The Executive Board is
responsible for the development of policy
necessary for the acquisition and manage-
ment of computer resources in major defense
systems. It consists of a representative from
the Assistant Secretary of Defense (Installa-
tions and Logistics), who is the chairman, the
Deputy Director Research & Engineering;
the Director, Telecommunications and Com-
mand and Control Systems; the Assistant
Secretary of Defense (Comptroller); and the
Assistant Secretary of Defense (Intelligence).

The Management Advisory Board is respon-
sible for coordinating technology efforts
among the DOD components, for conducting

policy impact assessment for the Executive
Board relating to computer resources, and for
reviewing computer resource technology
programs for policy consistency. It consists of
representatives from the Navy, Army, Air
Force, Office of Joint Chiefs of Staff, Defense
Communications Agency, National Security
Agency, Defense Advanced Research
Projects Agency, and Deputy Director
(T&E).

4.4 WARNER-NUNN AMENDMENT

The Warner-Nunn Amendment (Section 908
of Public Law 97-86, the DOD Authorization
Act, 1982) was implemented in order to
broaden the range of embedded computer
resources excluded from the provisions of the
Brooks Bill. It was intended to provide the
DOD with more control over the acquisition
of computer resources that are an integral
part of weapon systems.

The Warner-Nunn Amendment defined
those computer resources which are exempt
from the Brooks Bill. It defined MCCR as
those computer resources that perform the
following functions, operation, or use [2]:

(a) Involves intelligence activities;

(b) Involves cryptoanalytic activities related
to national security;

(¢) Involves the command and control of
military forces;

(d) Involves equipment that is an integral part
of a weapon system;,

(e) Is critical to the direct fulfillment military
or intel” jence missions.

The essential test as to whether the acquisi-
tion of computer resources is covered by the

4-3

Chapter 4 Software Acqulsition Policy

Warner-Nunn Amendment or the Brooks Bill
is the intended use of the equipment and ser-
vices, and not their commercial market place
availability. Interpretation of these policies
must not be lightly rationalized and used as an
excuse to depart from sound business and
management practices. Where there is doubt
as to the applicability, case-by-case deter-
minations shall be made by the Under
Secretary of Defense (Research and En-
gineering), in coordination with the Assistant
Secretary of Defense (Comptroller) [3].

4.5 MCCR STANDARDIZATION

The explosion in the number of weapon sys-
tem computer applications that occurred
during the late 1960s and the 1970s, resulted
in a comparable explosion in the number and
types of computers and programming lan-
guages. By the mid-seventies, there were
literally hundreds of different computer
programming languages being used to
generate military systems software. Along
with these languages, there was an almost
equal number of different computers in use.
The result was that engineers, technicians,
and computer programmers who were sup-
porting a particular weapon system could not
support a different weapon system without
costly retraining and delays. Rarely would
two different weapon systems use the same
computer or the same programming lan-
guage. This led to needless duplication of
effort and inefficient use of human resources.
Since each system had its own computer and
programming language, each »ystem was uni-
que and required unique resources.

Inorder to minimize weapon system software
support costs and to promote interoperability
between the various systems, the DOD
focused on three areas: higher order lan-
guages (HOLs), the software development
process, and computer hardware. The

Chapter 4 Software Acquisition Policy

specific policy and guidance for each area are
the following:

HOLs

DOD Directive 3405.1,
Computer Programming Language Policy

DOD Directive 3405.2,
Use of Ada in Weapon Systems

Software Development

DOD-STD-2167A,
Defense System: Software Development

DOD-STD-2168,
Defense System Software Quality Program

Computer Hardware

MIL-STD-1750A,
Airborne Computer listruction Set Architec-
ture.

HOLs and computer hardware were already
discussed in Chapter 3. DOD-STD-2167A
and 2168 are addressed in Chapter S.

4.6 DOD DIRECTIVE 3405.2

Standardization of HOLs has been an issue
within the DOD since the early 1970s. In 1976
DOD Instruction 5000.31, Interim List of
DOD Approved Higher Order Languages
(HOIL.) was issued as an interim measure to
limit the number of DOD approved HOLS to
SIX:

DOD FORTRAN
COBOL

Army TACPOL

Navy CMS-2M
CMS-2Y

4-4

JOVIAL J3
JOVIALJ73

Air Force

Later that instruction was amended to include
ATLAS as an approved HOL for automatic
test equipment. Concurrently, the DOD in-
itiated a fully competitive program to develop
a common, preferred, single HOL for DOD
software development programs. The out-
come of these efforts was the Ada program-
ming language. DOD Directive 3405.2, Use of
Ada in Weapon Systems, was published on
March 30, 1987. This directive established
DOD policy for the use of Ada as the single,
common, HOL in the development of com-
puters integral to weapon systems. Com-
puters are defined as being integral to a
weapon system if they are:

(a) Physically a part of, dedicated to, or essen-
tial to the real time performance of the mis-
sion;

(b) Used for specialized training, diagnostic
test and maintenance, simulation, or calibra-
tion;

(c) Used for R & D of weapon systems.

The directive applies to all new weapon sys-
tems entering into development (prior to Full
Scale Development (FSD)) and to major
upgrades (greater than 1/3 modification) to
existing systems. There are three exceptions,
however, to using the Ada programming lan-
guage:

(a) If, on the effective date of the directive, a
programming language other than Ada was
already in use during the FSD phase of a
weapon system, then chat particular language
may continue to be used throughout the
deployment and software support phases un-
less the system is undergoing a major software
upgrade.

(b) Adais preferred, but not required, as a test
language to be used solely for hardware
under test equipment.

(c) Ada is preferred, but not required, for
commercially available, off-the-shelf
software that will not be modified by the
DOD.

Except for the conditions stated above, a
waiver is required. Authority for issuing
waivers is delegated to each DOD component
only on a specific system or subsystem basis.
For each proposed waiver, a full justification
will be prepared and will include analysis of
developmental risk, technical performance,
life cost, and schedule impact.

4.7 DOD DIRECTIVE 3405.1

The overall policy for DOD computer lan-
guages, DOD Directive 3405.1, Computer
Programming Language Policy, was published
2 April 1987, three days after the Ada direc-
tive. It superseded DOD Instruction 5000.31
and revised the list of approved DOD HOLs
to be used for the development and support
of all computer resources managed under
DOD Directive 5000.29 and DOD Directive
7920.1 (See Section 4.13). The approved list
of the DOD programming languages is: Ada,
C/ATLAS, COBOL, CMS-2M, CMS-2Y,
FORTRAN, JOVIAL (J73), MINIMAL
BASIC, PASCAL, and SPL/1.

This directive stresses standardization of
HOLs, and establishes Ada as the single, com-
mon preferred language within the DOD.
When Ada is not used, only the other ap-
proved standard languages listed shall be
used. This directive serves to limit the number
of HOLs used in the DOD and facilitates the
transition to Ada. The order of preference is
based upon life cycle cost and impact as fol-
lows:

4.5

Chapter 4 Software Acquisition Policy

(a) Off-the-shelf applications packages and
advanced software technology;

(b) Ada-based software and 100ls;
(c) Approved standard HOLs.

4.8 Ada PROGRAMMING LANGUAGE

As mentioned earlier, after the successful
development of the first HOL compiler, many
new HOLs were quickly introduced. The
proliferation of languages within DOD had
resulted in an unwieldy logistics problem.
Each different language had its own unique
support requirements. In 1975, Malcolm
Currie, then Under Secretary of Defense for
Research and Engineering (USDRE), sug-
gested that the DOD consider using just one
software language. In 1976, an interim policy
was issued requiring the use of "approved”
higherorder languages listed in DOD Instruc-
tion 5000.31. At about the same time a com-
mittee called the Higher Order Language
Working Group was formed to review existing
HOLs to determine candidates for a single
DOD language. Their charter was to look for
HOLs specifically geared for weapon system
acquisition. One of their goals was to find a
language that supported both real-time
processing and large scale software develop-
ment programs. The HOL was also supposed
to support modern programming techniques
and practices such as top-down and structured
design.

The Language Working Group’s January
1977 evaluation concluded that no existing
language met all the DOD requirements but
that some, such as Pascal, Algol, and PL/I
could form a good basis for designing a "new"
language. InJuly 1977, as aresult of an exten-
sive evaluation process, a new set of language
requirements was established. The govern-
ment initiated four contracts for the design of

Chapter 4 Software Acquisition Policy

this new DOD language. After exhaustive
design evaluations, a final selection was made
for one contractor to develop the new lan-
guage which became known as Ada. The lan-
guage was named after Lady Augusta Ada
Byron, Countess of Lovelace, who is credited
with being the first programmer. She was a
well educated mathematician who suggested
and wrote the first programs for Charles
Babbage’s "Analytic Engine", apredecessor of
the modern computer. The winning contrac-
tor was the French based Honeywell-Bull
Corporation, and the design team was led by
Jean Ichbiah. Their product, the Ada
Programming Language Specification, MIL-
STD-1815, was officially published on 10
December 1980. In June 1983, it became an
American National Standards Institute
(ANSI) standard and was officially published
as ANSI/MIL-STD-1815A on 22 January
1983. In March 1987 it became an Interna-
tional Standards Organization (ISO) stand-
ard. The European software community has
been quick to adopt Ada.

In June 1983 when Dr. Richard DelLauer,
then the USDRE, directed that Ada be used
on all new major programs, he had been led
to believe by the DOD software communiy
that the necessary technical support (i.e.,
compilers) for Ada would be ready. Unfor-
tunately, this was not the case and this lack of
supporting tools is probably responsibie for a
majorit of the bad initial publicity Ada may
have re :eived. The fact remains, however,
that Ada is a good language for use on MCCR
as well as for general purpose applications.
What was initially missing were the support
resources required to develop Ada software;
the same resources that are required to
develop software in any HOL, The need for
support was well recognized and initial ~om-
pilers and tool sets to aid in the development
of Ada software are now becoming readily
available.

4-6

The major concept behind the use of Ada is
the enforcement of modern software en-
gineering principles. It is the real strength
behind the Ada programming language.

4.9 SOFTWARE ENGINEERING AND
TECHNOLOGY

A great deal of effort has been applied to the
area of software engineering, especially the
application of systems engineering to the
software development process. Numerous or-
ganizations have been created and/or tasked
with evaluating methods for improving
software quality and reliability; for reducing
development and support costs; and for con-
trolling the management of software develop-
ment. The main programs that have been
initiated are:

(a) Very High Speed Integrated Circuits
(YHSIC) - The VHSIC Program Office was
created in 1980 by the DOD in order to al-
leviate deficiencies in military integrated cir-
cuits (ICs). Unlike the early days of IC
technology, the DOD was no longer the driv-
ing force behind technological innovation nor
the largest user of IC chips. The commercial
market place was now dictating 1C develop-
ments by virtue of the fact that it was by far the
largest consumer of IC products. This meant
that military applications had become a
specialty and a highly customized business.
The commercial market place had no need for
extremely fast, highly specialized, low-volume
IC products; therefore the DOD took the in-
itiative, through the VHSIC program, to ac-
celerate the development of this technology.

Another problem plaguing military
electronics has been the unusually long time
it takes to incorporate a new product into a
weapon systemonce the product is introduced
into the commercial market place. It is not
unusual for a product to appear in a weapon

system up to five years after its commercial
appearance. In order to speed up this process,
the VHSIC Program has supported the
development and insertion of VHSIC chips
into military systems. This gives developers
and acquisition managers a military qualified
microelectronic technology that is on a par
with commercially available technology. At
present, VHSIC technology is being intro-
duced ii'o 2t least twenty-seven major sys-
tems. This technology has the potential for
greatly improving system performance [4].
Great advances are being made in computer
hardware. The challenge to the software com-
munity is to capitalize on this wealth of
hardware technology. Software needs to be
developed to fully use the capability of this
new hardware.

(b) Software Technology for Adaptable Reli-
able Systems (STARS) - The STARS Pro-
gram Office was established in 1983 by the
DOD to investigate ways of reducing software
development costs, to increase software sys-
tems reliability, to investigate softwar: auto-
mation techniques, and tolook at applications
for reusable software.

(¢) Software Engineering Institute (SEI) -
The SEI, located at Carnegie-Mellon Univer-
sity, was placed under contract by the Air
Force (Electronics System Division,
Hanscom AFB) in 1984. They were tasked
with investigating the transition of new
software technology, analyzing software
development environments, and providing
education in the software and system en-
gineering process. The SEIl has recommended
changes to the Federal Acquisition Regula-
tions on software data rights provisions [5];
developed an educational program on
software engineering; established liaisons
with a variety of educational institutions in
order to disseminate curriculum information
and material for undergraduate and graduate

4-7

Chapter 4 Software Acquisition Policy

education; and conducted numerous software
engineering conferences,

(d) Defense Science Board (DSB) - A DSB
Task Force on software was originally con-
vened in 1981 by the Under Secretary of
Defense (Acquisition) to review a draft DOD
Instruction on standardizing computer
hardware. The DSB recommended cancelling
any further tasking in this area. The Air Force,
however, had alrec .y developed a stand-
ardized ISA for a sixteen bit airborne com-
puter (MIL-STD-1750A). Later in the year,
the DSB was tasked with reviewing overall
software acquisition, management, and com-
puter resource technology procedures and
providing recommendations for rectifying any
problems. The Task Force’s September 1987
report, stated that the major problems with
military software development were not tech-
nical problems, but management problems.
They recommended that the DOD re-ex-
amine and change the attitudes, policies, and
practices regarding software acquisition {5].

4.10 SOFTWARE SUPPORT

The Joint Logistics Commanders Joint Policy
Coordination Group on Computer Resources
Management established a sub-panel in 1979
to specifically look into post-deployment
software support (PDSS) and the procedures
required to provide adequate software sup-
port during and after transition. PDSS will be
discussed in Chapter 7.

4.11 TOP LEVEL SERVICE DIRECTIVES
AND GUIDELINES

The following is a list of the guidance docu-
ments for the respective services. All of these
documents stem from the guidance provided
by DOD Directive 5000.29, Management of
Computer Resources in Major Defense Sys-
tems.

Chapuer 4 Software Acquisition Policy

Navy

SECNAVINST 5200.32
Management of Embedded Computer Resour-
ces in Department of the Navy Systems, Jun 79

OPNAVINST 5200.28
Life Cycle Management of Mission Critical

Computer Resources for Navy Systems, 25 Sep-
tember 1985

OPNAVINST 5230.21
Instruction on Standard Embedded Computer
Resources

NAVELEXINST 5200.23
Instruction on General Software Management

TADSTANDS

Tactical Digital Systems Standards A through
D on standard definitions, computers,
programming languages, reserve capacities,
and documentation.

Air Force

AFR 800-14
Life Cycle Management of Computer Resour-
ces in Systems, 29 September 1986

AFSCP 800-14

Air Force Systems Command Software Quality
Indicators: Management Quality Insight, 20
January 1987

AFSCP 800-43
Air Force Systems Command Software Quality
Indicators: Management Insight, 31 Jan 1986

AFSC/AFLCP 800-45
Software Risk Abatement (Draft), 1988.

AFSCP 800-5
Software Independent Verification and Valida-
tion (IV&V) (Draft)

4-8

ASDP 800-5

Software Development Capability/Capacity
Review, 10 1987

Army

DARCOM-R-70-16
Management of Computer Resources in Bat-
tlefield Automated Systems, 16 July 1979

Assistant Secretary of Army Policy Letter
Standardization of ECR, 1 July 1980

AMC-P 70-13
AMC Software Management Indicators, 31
January 1987

Marines

MCO 5200.23
Management of ECR in the Marine Corps, 19
August 1982

4.12 SOFTWARE DATA RIGHTS

The following definitions are relevant to
software data rights:

Copyright - A copyright protects the expres-
sion of an idea through unauthorized copying
or reproduction. It is easy and inexpensive to
obtain by simply filing an application with the
copyright office and providing a copy for the
Library of Congress. No examination of the
material is required.

Trade secret - Protects the underlying ideas,
concepts, procedures, formula, pattern,
device nr compilation that derives economic
value by not being readily available to others.
Must maintain secrecy (information is not
public domain).

Patent - Protection by trademark or trade
name. It is expensive, uncertain, and time

consuming (may take two years to obtain).
Patents destroy trade secret protection be-
cause patent disclosures are quite complete.

Restricted rights - Software developed totally
by non-government funds and usually
licensed to users.

License agreements - Agreement between a
contractor and the government (or another
contractor) limiting the use and the copying
of data which has been commercially sold
(rights to use, disclose, or reproduce).

The Federal copyright laws, patent laws, and
state trade secret laws provide legal protec-
tion of a contractor’s computer software. The
Copyright Act of 1976 was amended in 1980
to include computer programs. The Office of
Federal Procurement Policy (OFPP) was
tasked by a 10 April 1987 Executive Order, to
develop a firm national policy in favor of com-
mercial rights [6]. In the meantime, FAR Sub-
part 27.4 and 52.227-14 provide guidance to
the program office on software data rights,
Specific language in accordance with these
clauses of the FAR should be included in the
contract, both for the protection of the
government and the contractor.

4.13 AUTOMATED INFORMATION SYS-
TEMS

Although this chapter deals primarily with the
computer resources associated with weapon
systems, it may be useful to briefly discuss the
DOD policy on automated information sys-
tems.

After the DOD had taken steps to provide
initial guidance on the management aspects
of weapon system computer resources, it pub-
lished DOD Directive 7920.1, Life Cycle
Management of Automated Information Sys-
tems (AIS) on 17 October 1978 and DOD

49

Chapter 4 Software Acquisition Policy

Instruction 7920.2, "Major Automated Infor-
mation Systems Approval Process" on 20 Oc-
tober 1978. These two documents established
the policy for the procurement of general pur-
pose computers or ADP equipment primarily
intended for use in business applications and
subject to the provisions of the Brooks Bill.
AIS defines procedures for the acquisition of
equipment which is designed, built, operated,
and maintained Jor the sole purpose of col-
lecting, recording, processing, storing,
retrieving, and displaying information. These
systems usually have large data storage re-
quirements and are used for business type
applications such as payroll, accounting, and
inventory. The function of these two DOD
documents is very similar to that of the DOD
Directive 5000.29. Some of the similarities
include the promotion of life cycle manage-
ment, visibility, cost effectiveness, stand-
ardization of the approval process, and
emphasis on requirements’ validation.

4.14 SUMMARY

Proliferation of software and computer
resources has occurred since their introduc-
tion in the late fifties. The Brooks Bill was
passed in 1965 to promote competition and to
regulate how ADP should be acquired and
managed within the government. The em-
phasis in this chapter, however, has been on
the acquisition policy for software exempted
from the Brooks Bill.

In 1976 the DOD issued Directive 5000.29.
This directive provided guidance on the
management of software and embedded com-
puter resources. Management Steering Com-
mittee for Embedded Computer Resources
was established to guide this effort. This was
followed by software workshops in 1979 con-
ducted by the Joint Logistics Commanders’
Joint Policy Coordination Group on Com-
puter Resource Management. For the past

Chapter 4 Software Acquisition Policy

several years, a major DOD focus has been
the standardization of the software life cycle.

4.15 REFERENCES

1. Thirty-eighth Report by the Committee on
Government Operations, Administration of
Public Law 89-306, Procurement of ADP
Resources by the Federal Government, 1 Oc-
tober 1976.

2. Section 2315 of Title 10, United States
Code.

3. Memorandum of Deputy Secretary of
Defense, Acquisition of Automatic Data

4-10

Processing (ADP) Equipment and Services, 1
February 1982.

4, VHSIC Program Office, VHSIC Annual
Report for 1986, Office of the Under Secretary
of Defense for Acquisition, 31 December
1986.

5. Report of the Defense Science Board Task
Force, Military Software, Office of the Under
Secretary of Defense for Acquisition, Sep-
tember 1987.

6. "Commercial Rights Will Be Protected,"
Washington Technology, 17 December 1987.

CHAPTER §

Chapter 5 Software Development Process

SOFTWARE DEVELOPMENT PROCESS

5.1 INTRODUCTION

The development of a weapon system re-
quires integrating technical, administrative,
and management disciplines into a cohesive,
well-planned, and rigorously controlled
process. As a critical component of a weapon
system, software must be developed under a
similarly disciplined engineering process. In
Software Engineering Concepts [1], Richard
Fairley defines software engineering as:

"...the technological and managerial discipline
concerned with systematic production and
maintenance of software products that are
developed and modified on time and within cost
estimates."

Barry Boehm [2] defines software engineer-
ing as a discipline that:

"...involves the practical application of scientific
knowledge to the design and construction of
computer programs and the associated docu-
mentation required to develop, operate, and
maintain them."

The main point is that the software develop-
ment process must be scientific and dis-
ciplined. This is not different from the
hardware development process. As with
hardware, the goal of the soft.zare develop-
ment process is to consistently produce a
quality product, within schedule and cost.

With the publication of DOD-STD-2167A,
Defense System Software Development, the
DOD took the first step toward a stand-
ardized, systems engineering approach to
software development [3]. This standard is
supported by other military documents and
describes a standard process and documenta-
tion for computer software development. To
use this standard effectively, the program of-
fice must have a thorough understanding of
the system being developed; particularly the
overall system requirements and con-
straints.

Requirements must be defined early through
trade studies and prototyping. Traceability of

Chapter 5 Software Development Process

requirements must be maintained throughout
the acquisition life cycle and any requirement
that cannot be traced up to a higher require-
ment should be modified or eliminated.

The material presented in this chapter will
describe activities that occur ina "typical” pro-
gram. The reader should understand that real
programs seldom actually follow this "typical"
profile. Phases can occur concurrently; they
can be by-passed altogether; protracted; or
condensed to satisfy the needs of the overall
program objectives. The point to understand
is that although the process is somewhat con-
stant, its chronological occurrence is not
fixed. The following sections describe the
classical approach to software development.

5.2 SUMMARY OF DEVELOPMENT AC-
TIVITIES

Figure 5-1 presents an overview of the
development activities of an integrated
software and hardware system as reflected in
DOD-STD-2167A.

All weapon system development programs
begin with a determination of system level
re: 1irements. These activities occur during
the Concept Exploration (CE) and the
Demonstration/Validation (D/V) phases of
the acquisition cycle.

The Systems Requirements Review (SRR)
may be held after the initial determination of
system functions (functional analysis) and the
preliminary allocation of these functions to
configuration items. The SRR provides an
opportunity for an initial insight into the
developer’s direction, progress and conver-
gence on a system configuration, The System
Design Review (SDR) is areview of the over-
all system requirements in order to establish
the functional baseline documented by the
system specification. The functional baseline
should allocate requirements to hardware and
software configuration items.

The development of both hardware and
software can begin once the Functional
Baseline is established. These activities occur

Hardware

HW Rqmis TR Development
Analysis Tmse
Prelim \\\\\\\‘k‘
Design \\Q;\\\“
Detailed S
Design I S
Fabrication TR,

System System

O

3 (cooh
: . : e
Rgmts @ @
Analysis Design ‘

- Ceo cscl "GC&@A
Q’D > — CSC integ Test ’ A7
G};D — & Test ’:,//_
i Detailed e sl
Design e T
Design S e
SW Rgmts e
Analysis T Software
e Development
] | I 1] | 1 1
SRR SDR SSR PDR CDR TRR FCA PCA FQR
- A4 v
Functional Allocated Devalopmental Product
Baseline Baseline Cprmm—— Configuration > Baseline

Fig. 5-1 Software/Hardware Development

5-2

in the Full Scale Development (FSD) phase
and are monitored through reviews and audits
as described in MIL-STD-1521B, Technical
Reviews and Audits for Systems, Equipment,
and Computer Resources. The Allocated
Baseline for software should be established at
the Software Specification Review (SSR). For
hardware the allocated baseline is normally
established at the Preliminary Design Review
(PDR), or no later than the Critical Design
Review (CDR).

Product development starts once the design
effort is completed. (For systems using new
functions, procedures, and techniques, it may
be necessary to actually perform some trial
coding and testing in order to complete the
design.) For hardware this building effort is
called fabrication and for software it is called
coding and testing. Testing is further sub-
divided into Computer Software Unit (CSU)
testing and Computer Software Component
(CSC) integration and testing, After the
items are built, formalized testing takes place
in accordance with approved test plans and
procedures. A government Test Readiness
Review (TRR) is conducted to determine the
developer’s readiness to perform formalized
acceptance testing. Completion of software
testing will lead to system integration and

Chapter 5 Software Development Process

testing. Both Functional Corfiguration
Audits (FCA) and Physical Configuration
Audits (PCA) will be conducted on hardware
and software configuration items to establish
the respective Product Baselines. After a sys-
tem level Formal Qualification Review
(FQR), the integrated system is turned over
to the government for operational testing as
defined in the system’s Test and Evaluation
Master Plan (TEMP). Successful completion
of this testing indicates that the product is
fully defined and ready to be manufactured.
For hardware, the production line would
begin to assemble carbon copy items. For
software, turning out copies is a trivial
process. The product is complete and needs
only to be duplicated on the required media
for transfer to the target system computer,

5.3 SYSTEM REQUIREMENTS ANALYSIS
AND DESIGN

Figure 5-2 depicts the activities and products
associated with the CE and D/V phases. The
CE and D/V phase activities are system
oriented to:

(a) Define overall project objectives;

(b) Determine project feasibility;

f ANALYSIS

\/

- Systém
¢ Requirements

) Review
SYSTEM
DESIGN

System

Design

, Review

SRR SDR

REQUIREMENTS ‘ System Spec (Prefim)

Functional Baseline

System Spec

System/Segment Design Doc
Software Requirements Spec éPrelim;
Interface Requirements Spec (Prelim
Operational Concept Document (OCD)
Software Development Plan
Configuration Mgmt Plan

SOFTWARE
DEVELOPMENT

SSR

Fig. 5-2 System Requirements

5-3

Chapter 5 Software Development Process

(c¢) Develop acquisition development
strategy;

(d) Establish resource cost and schedule;

(e) Define the interrelationships between
hardware and software;

(f) Define technical and business functions
and performance.

The first step is to generate the system level
requirements and reflect them in a System/
Segment Specification (SSS) (Type A
Specification). It doesn’t make any difference
whether it is a hardware only, a software only,
or a hardware and software system; the most
important and critical aspect of weapon sys-
tem development is to "nail down" the system
requirements which must first be finalized at
the functional level, before being allocated to
hardware and software. Recognize that newer
software development practices use trial
coding and testing as a method of refining
derived software requirements.

The requirements, finalized through a series
of engineering studies and tradeoffs, include:

(a) Requirements Refinement - The overall
system requirements, including constraints,
should be examined to identify the factors that
drive requirements for computer resources.
These factors may include system interfaces,
interoperability, communication functions,
personnel functions, the anticipated level and
urgency of change, and requirements for
reliability and responsive support.

(b) Operational Concept Analysis - The
operational concept should be analyzed in
order to determine the role of computer
resources. Particular attention is paid to re-
quirements for mission preparation, operator

interface, control functions, and mission
analysis.

(¢) Tradeoff and Optimization - The effects
of system constraints such as the operations
concept, the support concept, performance
requirements, logistics, availability and
maturity of technology, and limitations on
cost, schedule, and resources are determined.
Alternative computer resources approaches
are studied to:

- meet operational, interoperability, and
support requirements;

- determine how the system requirements
for reliability and maintainability will be
satisfied;

- determine how requirements for system
security will be met;

A determination will also be made regarding
the suitability of standard computer lan-
guages and instruction set architectures.

(d) Risk - For each approach, the risk as-
sociated with computer resources is
evaluated. Risk areas include compiler
maturity, availability and maturity of the
software support tools, loosely defined or in-
complete interface definitions, and lack of
adequate computer memory or throughput
capability.

5.3.1 System Design

System Design begins »n or about the time of
the SRR. The major function of System
Design is to establish the functional baseline
of the system by updating and approving the
system specification and the operational con-
cept; by developing the initial subsystem/seg-
ment designs; and by refining the systems

engineering planning activities to be
employed during system’s development.
Typical products are:

(a) System Specification;
(b) System/Segment Designs;
(c) Configuration Management Plan (CMP);

(d) Computer Resources Life Cycle Manage-
ment Plan (CRLCMP);

(e) Preliminary Software Requirement
Specification (SRS);

(f) Preliminary Interface Requirements
Specification (IRS);

3.4 SOFTWARE DEVELOPMENT

Before discussing software development,
some definitions are in order:

Computer Software Configuration Item
(CSCI) - A configuration item for computer
software.

Computer Software Component (CSC) - A
distinct part of a computer software con-
figuration item (CSCI). CSCs may be further
decomposed into other CSCs and Computer
Software Units.

Computer Software Unit - An element
specified in the design of a Computer
Software Component (CSC) that is separately
testable. A CSU is the lowest level of software
decomposition.

Weapon system software is partitioned into
CSClIs based on the program office’s manage-
ment strategy. Each CSCI is managed in-
dividually and follows its own development
process. A software development process is

Chapter 5 Software Development Process

defined in DOD-STD-2167A and consists of
eight major activities: Systems Requirements
Analysis/Design, Software Requirements
Analysis, Preliminary Design, Detailed
Design, Coding and CSU Testing, CSC In-
tegration and Testing, and CSCI Testing,
Systems Integration and Testing. These
steps typically occur during FSD, although
they may occur one or more times during each
of the system life cycle phases [4]. This is
especially true if software prototyping is per-
formed during the Concept Demonstration
and Validation Phase. The steps are not
linear since software development is iterative
in nature and any step may be repeated many
times during the course of system develop-
ment. For many software developments it is
necessary to plan for these iterations prior to
establishing a firm allocated baseline.

Managing software is very similar to manag-
ing hardware; both require discipline and
controlin order tosucceed. Animportant part
of the control process is the formal deter-
mination of whether or not the developer is
ready to proceed to the next step. This is
usually determined through a series of design
reviews and audits. Software reviews and
audits can occur in conjunction with hardware
reviews, but they do not necessarily have to.
It is important that appropriate system level
reviews be held at strategic intervals. Thiswill
focus everyone’s attention on system design
and leads to timely baselines for the hardware,
the software, and all the interfaces. Software
development has two major reviews that are
separate from hardware reviews: the Software
Specification Review (SSR) and the Test
Readiness Review (TRR).

The SSR is a formal review of a CSCI’s re-
quirements as specified in the software
specifications. A collective SSR for a group of
configuration items, addressing each con-
figuration item individually, may be held

Chapter 5 Software Development Process

when such an approach is advantageous to the
government. Its purpose is to establish the
allocated baseline for preliminary CSCI
design by demonstrating to the government
the adequacy of the software specifications.

The TRR is a formal review of the
contractor’s readiness to begin formal CSCI
testing. It is conducted after software test
procedures are available and CSCintegration
testing is complete. The purpose of the TRR

based on the System Specification. The
means of testing and examining the software
are also identified. During requirements
analysis, prototype versions of high risk areas,
user interfaces, and/or systems skeletons may
be partially designed and coded. Prototyping
is an excellent tool for performing require-
ments analysis.

The developer should also identify support
tools and resources, and establish timing and

SOFTWARE
REQUIREMENTS
ANALYSIS

SOFTWARE

Software Requirements Specitication
Interface Requirements Specification

Functional Baseline

g g N PRELIMINARY
.! (SPECIFICATION) - DESIGN
; e REVIEW -

SDR SSR PDR

Allocated Baseline

Fig. 5-3 Software Requirements Analysis

is to determine whether the contractor is
ready to begin formal CSCI testing that can be
witnessed by the government. A technical
understanding must be reached on the infor-
mal test results, and on the validity and the
degree of completeness of such documents as
an operator’s manual, a user’s manual, and a
computer programmer’s manual.

S5.4.1 Software Requirements Analysis

The first step in the software development
cycle is the Software Requirements Analysis
(Figure 5-3). The purpose of the Software
Requirements Analysis is to establish
detailed functional, performance, interface,
and qualification requirements for each CSCI

sizing estimates. The Program Manager must
ensure that all software requirements, as
reflected in the software development
specifications, are traceable to the system
specification and that the Software Develop-
ment Plan is updated to identify the required
resources, facilities, personnel, development
schedule and milestones, and software tools.
The developer may also customize the techni-
ques, methodologies, standards and proce-
dures to be used in software development.

The outputs of the Software Requirements
Analysis are final versions of the software
specifications, and an updated Software
Development Plan. These documents will be
reviewed at the SSR. The Computer Resour-

5-6

ces Life Cycle Management Plan (CRLCMP)
may also be updated.

5.4.2 Preliminary Design

After the software allocated baseline is estab-
lished, the developer has traditionally
proceeded into the Software Preliminary
Design as shown in Figure 5-4. Preliminary
design activity deteymines the overall struc-
ture of the software to be built. Based on the
requirements, the developer may partition
the software into components and define the
function of each component and the relation-
ships between them. This is called functional
decomposition. Input and output relation-
ships with external devices (such as displays
and sensors) are refined according to the
hardware configuration and software struc-
ture. Timing and memory budgets for com-
ponents are established so that the software
requirements can be satisfied within the
hardware constraints. If a technique such as
Object Oriented Design (OOD) is used, func-
tional decomposition doesn’t really apply. In-
stead objects and classes are established along
with clear definition of data requirements,

The developer should provide a preliminary
design that insures that requirements from

Chapter 5 Software Development Process

the software specifications can be traced
down to the software components of each
CSCI. In effect the early work on preliminary
design can be used to validate the allocated
baseline. The software design is reflected in
the preliminary Software Design Document
(SDD) and Interface Design Document
(IDD). These documents will describe the
system architecture, memory and processing
time allocations, interrupt requirements,
timing and sequencing considerations, and
input/output constraints for each software
component. The developer should also
generate a Software Test Plan (STP) outlining
the proposed test program and establishing
test requirements for software integration
and testing,

The outputs of the contractor’s efforts are
preliminary versions of the software design
documents and the Software Test Plan. These
documents are revicwed during the PDR,
Throughout the development effort, the
developer will conduct informal design
reviews, inspections, and walkthroughs to
evaluate the progress and correctness of the
design for each software component. The
results of these inspections will serve as the
basis for material presented at the PDR,

SOFTWARE] Software Design Document (Prelim)
PRELIMINARY Software Test Plan (Test identification)
‘ DESIGN ’ Interface Design Document (Prelim)
| 1
: ' PRELIMINARY .
! (‘ DETAILED
i L DESIGN |- iy
; . REVIEW
SSR PDR CDR
Alfocated Baseline ¥t Develgpmema! -
Contiguration

Fig. 5-4 Software Preliminary Design

Chapter 5 Software Development Process

5.4.3 Detailed Design

The purpose of the Detailed Design (Figure
§5-5) activity is to logically define anu complete
a software design that satisfies the allocated
requirements. The level of design detail must
be such that development of the computer
program can be accomplished by someone
other than the original designer. Componeiit
functions, inputs and outputs, plus any con-
straints (such as memory size or response
time) should be defined. Logical, static, and
dynamicrelationships among the components
should be specified and the component and
system integration test procedures generated.

A complete detailed design includes not only
a description of the computer processes to be
performed but also detailed descriptions of
the data to be processed. A data dictionary is
an effective way of documenting this needed
design information. For software that proces-
ses or manipulates a large amount of interre-
lated data, the structure of the data itself
should be defined.

Components which must be coded in assemb-
ly language or another "non-standard’ lan-

guage should be clearly defined and the
reasons for the departure from the standard
justified. Any special conditions that must be
followed when programming the component
should be similarly described and clearly
documented [5]. These exceptions are nor-
mally addressed in the Software Develop-
ment Plan.

During the entire design and development
process the contractor should document the
development of each unit, component, and
CSCI in software development folders
(SDFs). A separate SDF should be main-
tained for each division or breakdown of the
software. These divisions or breakdowns are
determined by the particular design
methodology used. The SDFs are normally
maintained for the duration of the contract
and made available for government review
upon request. A set of SDFs may include the
following information:

(a) Design considerations and constraints;
(b) Design documentation and data;

(¢) Schedule anq status information;

SOFTWARE ’ Software Design Document (Detailed Design)
DETAILED Software Test Description (Cases)
DESIGN Interface Design Document
CRITIC,
CAL N\ CODING AND CSU
I3
816, ,ﬁ
{ DESIGN ! TESTING
. REVIEW -
| J
POR CDR
I Developimental PeA
' Configurahion

Fig. 5-§ Software Detailed Design

5-8

Chapter 5 Software Development Process

(d) Test requirements and responsibilities; presented in the design specification,
programming of each unit is accomplished by
(e) Test cases, procedures and results. the assigned programmer in the specified

programming language, usually Ada. As the
The contractor documents and implements programming of each unit is completed, the
procedures for establishing and maintaining programmer examines the program for er-

SDFs in a Software Development Library. rors. The program may be compiled when the
The library is a management tool used by the programmer is satisfied that the source pro-
contractor io assist in developmental con- gram correctly implements the detailed

figuration management,. It serves as a "storage design. Compiling translates the source pro-
house" to control access of software, gram to its machine executable form, the ob-
documentation, and associated tools and pro- ject program.

CODING
&
CSU TESTING

! e SOURCE CODE

: < .) > CSC INTEGRATION

: s & TESTING

: S LISTINGS)

CDOR
-t Developmental Configuration -
Fig. 5-6 Coding and CSU Testing
cedures used to facilitate the orderly develop- Ifthe detailed design is in error, is ambiguous,
ment and subsequent support of software [0]. or is not sufficiently complete to permit the
programming to continue without further

A CDR (or a series of smaller CDRs) is con- definition, the programmer should consult
ducted at the conclusion of the detailed the original designer. The resolution should

design. The CDR should assure that the be documented, and all affected require-
software design satisfies the requirements of ments, design, and test documentation up-
both the system level specification and the dated accordingly.
software development specifications.

The purpose of the unit testing activity is to

5.4.4 Coding and CSU Testing eliminate any errors that may exist in the units

as they are programmed. These errors may be
The purpose of programming is to transla.. due to programmer mistakes or deficiencies
the detailed software design into a program- in the software requirements and design

ming language such as Ada. It is during the documentation. Usually, the test of a unit is
programming activity that listings of the the responsibility of the programmer who
source program are generated (Figure 5-0). programmed the unit. Unit testing is the ac-
Based on the detailed software design tivity that permits the most control over test

$-9

Chapter 5 Software Development Process

conditions and visibility into software be-
havior. An efficient software development
effort requires rigorous unit level test to
detect most zrrors before CSC Integration
and Test.

Besides producing the source and object code
and their listings, the contractor develops and
records in software development folders the
informal test procedures for each unit test as
well as the test results. The contractor will
usually conduct informal code inspections or
walkthroughs on each coded unit and com-
ponent during several stages of its develop-
ment. There are no formal reviews scheduled
during this step of the development cycle.

5.4.5 CSC Integration and Testing

Once the software is coded and each unit and
component tested for compliance with its
design requirements, the contractor should
begin CSC Integration and Testing as il-
lustrated in Figure 5-7. The purpose of CSC
Integration and Testing is to combine the
software units and components that have
been independently tested into the total
software product and to demonstrate that thés
combination fulfills the system design. The

integration is done in a phased manner with
only a few components being combined at
first, additional ones added after the initial
combination has been tested, and the process
repeated until all components have been in-
tegrated. The phasing of this integration
should be based on the functional capabilities
that can be demonstrated by specific groups.
There may be some overlap with the previous
step since some components may be ready for
integration while others are still being coded.
Most testing performed during Coding and
CSU Testing, and CSC Integration and Test-
ing is called "informal testing". This term
doesn’t imply that the testing is "casual” or
"haphazard", but instead implies that the test-
ing doesn’t require government approval.
Some formal testing may be accomplished
during these steps, but most formal testing is
usually accomplished during the next step.

5.4.6 CSCI Testing

After completion of a successful TRR, the
contractor will proceed with CSCI Testing
(Figure 5-8), the last step of the software
development cycle. The purpose is to per-
form formal tests, in accordance with the
software test plans and procedures, on each

i |
l CSC INTEGRATION Software Test Descriptions
i
& i {Procedures)
TESTING i
. |
TEST | csel
READINESS —-
REVIEW : TESTING
TRR

Fig. 5-7 CSC Integration and Testing

5-10

CSCI and to establish the software Product
Baseline. Testing during this step is intended
to show that the software satisfies the
Software Requirements Specification and the
Interface Requirements Specification.

Throughout CSCI testing, the contractor
should be updating all previous software
documentation, analyzing test data, generat-
ing the Software Test Reports (STR), and
finalizing the Software Product Specification
(SPS) (C-S Specification). This will be the
basis for the software Product Baseline nor-
mally established at the PCA, which may im-
mediately follow, or be conducted
concurrently with, the FCA for a software
only development. Normally, the PCA occurs
after the software is released for integration
and testing with the system following the
software FCA as illustrated in Figure S-8.
During the software FCA the government
verifies that the CSCls perform in accordance
with their respective requirements and inter-
face specifications by examining the test

Chapter 5 Software Development Process

results and reviewing the operational and sup-
port documentation. The PCA is the formal
technical examination of the as-built software
product against its design. This includes the
product specification and the as-coded
documentation.

The typical outputs of the contractor’s efforts
in CSCI Testing are the Software Test Report
(STR), operational and support documenta-
tion such as the Computer System Operator’s
Manual (CSOM), the Software Users Manual
(SUM), the Software Programmer’s Manual
(SPM), the Firmware Support Manual
(FSM), the Computer Resources Integrated
Support Document (CRISD), the Version
Description Document (VDD), and the
Software Product Specification (SPS). Except
for updates and/or revisions, all deliverable
documentation should be completed at this
time. Appendix H contains a listing of the
standardized software documentation,
defined in DOD-STD-2167A, that may be
required for software development programs.

REQUIREMENTS
TESTING

o

; o FUNCTIONAL/
i ' PHYSICAL

: \ CONFIGURATION
5 R AUDITS

TRR FCA/PCA
Developmental Product
Configuration Baseline

Software Test Reports
Computer System Operator's Manual
Software User's Manual
cscl Software Programmer's Manual
Firmware Support Manual
Computer Resources Integrated Support Document
Software Product Specification
Source Code Listing
Software Design Document
Version Description Document

SYSTEM INTEGRATION
AND TESTING

FQR

Fig. 5-8 CSCI Testing

Chapter 5 Software Development Process

5.5 SYSTEM INTEGRATION & TESTING

The purpose of System Integration and Test-
ing is to ensure that the developed software
works with the system in the environment that
it was designed for (Figure 5-9). The system
is turned over to the government after an
acceptable Formal Qualification Review
(FOR).The FQR is a system-level review that
verifies that the actual system performance
complies with the system requirements. For
computer resources, it addresses the aspects
of the software and hardware performance
that have been tested after the FCA and PCA.

stipulated in the contract will be delivered to
the government who will then assume con-
figuration control responsibility. The contrac-
tor, however, will be available to support the
government’s test and evaluation efforts and
to conduct any required acceptance tests.

5.6 TAILORING

The purpose of tailoring is to reduce the over-
all costs of an acquisition, primarily by reduc-
ing the amount and type of documentation
being delivered by the contractor and by
eliminating redundant or unnecessary testing

! '
% SYSTEM i
! INTEGRATION
| &]
TESTING }
. !
: | - | | !
? Formal TESTING | | PRODUCTION]
; { Qualification :—* & qi & |
: " Review i :
: EVALUATION | | SUPPORT |
FCA PCA FGQR
Developmental Product
Configuration Baseline

Fig. 5-9 Systems Integration and Test

A successful FQR is predicated on a deter-
mination that the system meets the specified
requirements in the hardware, software and
interface specifications.

The contractor’s role will diminish sig-
nificantly subsequent to the FQR. Contractor
configuration control of the software should
terminate once the product bascline is ap-
proved and the government assumes respon-
sibility. All updated documentation, source
and object code listings, and all other items

S-12

or procedures. Some questions whose
answers will provide tailoring guidance are:

(a) Is all of the documentation described in
DOD-STD-2167A necessary?

(b) What documentation is already available
even if in a different format?

(c) Is it cost-effective to modify it?

(d) Is the contractor’s format acceptable?

(e) How many copies are actually needed?
(f) How can DOD-STD-2167A be tailored?

(g) Is a formal design review necessary for
each CSCI?

(h) How should they be scheduled?

DOD-STD-2167A should be tailored by
deleting non-applicable requirements. How
does a program manager determine which
requirements are not applicable? Figure 5-10
illustrates the tailoring process.

Most tailoring is implemented through the
statement of work (SOW). A thorough under-
standing of requirements (functional, perfor-

Chapter 5 Software Development Process

mance, test, documentation) is required in
order to properly tailor the standards and
specifications.

The first step is to ask if the requirement is
appropriate? If not, then tailor it out through
the SOW. If the requirement is appropriate,
then ask if the requirement is adequate? If it
is, then impose the requirement through the
SOW. If the requirement is not adequate, ask
if the requirement is too restrictive or too
flexible? If it’s too restrictive, delete it or
modify it in the SOW. If it’s too flexible, add
to or modify the requirement in the SOW.
Use careful judgment when tailoring a pro-
gram. Don’t arbitrarily tailor areas simply to
reduce program costs. In the long run, this
may increase life cycle costs.

T e

Is the ™
. No / TAILOR OUT
Requirenient }K
Appropriate? .. THROUGH SOW
Yes
Is the l ves ’< TASK REQUIREMENT >
Requirement THROUGH SOW
Adequate? e
No i
Too Restrictive . ELIMINATE OR MODIFY
A < REQUIREMENTS >
is the A
) THROUGH SOW
Reguirement .
Too Restrictive -
or Too Flexible?
’ Too Flexible e ADD OR QUALIFY
P(REQUIREMENTS >

THROUGH SOW ’

Fig. 5-10 Tailoring Process

5-13

Chapter 5 Software Development Process

5.7 SUMMARY

Software that is part of a weapon system is
managed by partitioning into CSCls. Lach
CSCI is managed individually and follows its
own software development cycle. Software
development activities can be broken down
into six steps; any of which can be repeated as
many times as necessary during the develop-
ment cycle. These six steps are Software Re-
quirements Analysis, Preliminary Design,
Detailed Design, Coding and CSU Testing,
CSC Integration and Testing, and CSCI Test-
ing. These steps typically occur during the
Full Scale De velopment Phase.

DOD-STD-2157A is the approved standard
to be used by DOD agencies for software
development. It is to be used in conjunction
with DOD-STD-2168, Software Quality Pro-
gram Plan. These two standards are not in-
tended to discourage the use of any particular
software development method, but instead, to
aid the Program Manager in developing and
maintaining quality software. They should be
used throughout the acquisition life cycle and
tailored according to system needs.

It is especially important to develop the
product as a system. Never lose sight of the
fact that hardware and software development
are intimately related. Although they are
developed in parallel, software is almost al-
ways in the critical path anditis up to the

5-14

Program Manager to insure proper integra-
tion of the two through carefully planned
reviews and audits. The talents of an inde-
pendent verification and validation (IV&V)
activity may be used to aid in this process.

5.8 REFERENCES

1. Fairley, Richard E., Software Engineering
Concepts, Tyngsboro, Mass: McGraw Hill
Book Co., 1988S.

2. Boehm, Barry, "Software Engineering
Education: Some Industry Needs," in Software
Engineering Education: Needs and Objectives,
Edited by P. Freeman and A. Wasserman,
Springer-Verlag, Berlin 1976.

3 DOD-STD-2167A, Defense System
Software Development, 29 February 1988.

4. DOD Directive 5000.29, Management of
Computer Resources in major defense Systems,
26 April 1976.

S. Rubey, Raymond J., 4 Guide to the
Management of Software in Weapon Systems,
2nd Edition, March 1985.

6. Ferens, Daniel V., Mission Critical Com-
puter Resources Software Support Manage-
ment, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, First Edition,
May 1987.

CHAPTER 6

Chapter 6 Software Test and Evaluation

SOFTWARE TEST AND EVALUATION

Software test and evaluation are two of the
most difficult, frustrating, and expensive ac-
tivities that are performed during system
development. Unfortunately, they may also
be the most misunderstood functions of the
entire system acquisition cycle. Before dis-
cussing the details of software testing, let us
review the software development life cycle
and see how the software test process fits in,

6.1 TEST PLANNING

Test and Evaluation (T&E) planning is in-
itiated at the inception of the development
process. During the Concept Exploration
(CE) Phase the initial draft of the Test and
Evaluation Master Plan (TEMP) is
developed. The TEMP is the basic planning
document for all T&E related to a particular
system acquisition and is used by the Office of
the Secretary of Defense (OSD) and all DOD
components in planning, reviewing, and ap-
proving all T&E activities. The TEMP
provides the pasis and authority for all other
detailed T&E planning documents.

The TEMP addresses two types of computer
resources: system support and embedded
computer resources.

6.1.1 System Support Computer Resources

System support computer resources include
all the government and contractor planned
software and computer resources, required to
fully test the overall system. These test
resources include [1]:

Test Support Equipment - All unique or
modified test support equipment required to
conduct the planned test program including
any special calibration and software require-
ments,

Threat Systems - All threat simulators against
which the system will be tested including the
number and timing requirements,

Simulators, Models, and Testbeds - All sys-
tem simulations required including com-
puter-driven simulation models and

Chapter 6 Software Test and Evaluation

hardware-in-the-loop testbeds identified by
specific test phase.

Special Requirements - All non-instrumenta-
tion capabilities and resources required such
as special data processing or databases.

For all of these test resources the system re-
quirements are compared with existing and
programmed capabilities in order to identify
any major shortfalls.

6.1.2 Mission Critical Computer Resources

The initial draft of the TEMP will include a
preliminary Software Test and Evaluation
Plan in Part III. This plan describes the an-
ticipated software testing necessary to
demonstrate the ability of the mission critical
computer resources to achieve the system ob-
jectives.. Detailed information on the TEMP
may be found in DOD Directive 5000.3-M-3,
Test and Evaluation Master Plan (TEMP)
Guidelines, 26 Jan 1990,

During the Demonstration/Validation (D/V)
Phase, the TEMP is updated to reflect further
refinements in the objectives and evaluation
criteria of the weapon system computer
resources and to include plans for Develop-
mental Test and Evaluation (DT&E) and
Operational Test and Evaluation (OT&E).
As part of contractor involvement, a Software
Development Plan (SDP) is generated along
with a Software Test Plan (STP). The contrac-
tor developed STP must reflect the overall
Software Test and Evaluation Plan as stated
in the TEMP. Along with the SDP, they be-
come the basic documents governing the con-
duct of the mission critical computer
resources development and test activities.

Once the Software Requirements Specifica-
tion (SRS) and the Interface Requirements
Specification (IRS) have been generated and

approved, the preliminary software design is
initiated (Figure 6-1). Preliminary design is
the development of an overall skeletal struc-
ture or architecture for the software. The
overall structure is defined to include such

SOFTWARE
REQMTS
SPEC
(SRS)

OFFENSIVE

DEFENSIVE

Fig. 6-1 Preliminary Design

things as the types, names and number of
software modules; their calling sequence and
their input and output parameters; their ap-
proximate execution times; and other per-
tinent relationships that should exist between
the various modules. Since Ada modules and
packages can be compiled without the re-
quirement that lower level code be available,
preliminary design using an Ada-based Pro-
gram Design Language (PDL) is very valu-
able. Please note that, if a technique such as
Object Oriented Design is used, the proce-
dure just described may not really apply. In-
stead objects and classes are established along
with a clear definition of data requirements.

Official government approval will be
provided once a preliminary design has been
completed and a Preliminary Design Review
(PDR) has been held. The PDR should be
approached with care and preparation since
its completion is a signal to the contractor to
proceed with the detailed design.

During the detailed design (Figure 6-2), the
overall architecture developed during the
preliminary design is fleshed out with detailed
algorithms and logic implementation details.
Figure 6-2 shows the detail process and data
flow of a typical task using Buhr structure
graphs [2]. In the past, pseudo-code (English-
like programming statements) and traditional
flowcharts were often used in this phase.
DOD policy, however, now requires that the
detailed design also be developed using Ada

Chapter 6 Software Test and Evaluation

group computer software component (CSC)
testing can start. This testing is usually infor-
mal in nature and is usually performed by the
programmer. Formalized testing, as
described in the Software Development Plan
and the Software Test Plan, can begin after
the completion of coding and informal
programmer testing. The contractor can con-
duct his own formalized testing but any formal
testing which is to be witnessed by the govern-
ment, doesn’t begin until a formal Test Readi-

Interrupt i ‘
et e e g e e

Result T * Status
EVENT DECODER

Interrupt

RECOGNIZE

YAW_CONTROL / ROLL CONTROL

P
_. e = R
Comimand o
O--—mm— | ¢

COMMAND RECOGNIZER ———» E COMMAND PROCESSOR
() |8
Result 8

/ el
- U

{ WARNIN&PAN[L “ t { AC'Of-\lTR(v)L'S-&DIS-PLI‘\Y; l

Fig. 6-2 Detailed Design

or an Ada based PDL. Once again, use of Ada
as a design language will be immensely useful
because the actual coding of the detailed
design will be a natural follow-on to the
detailed design. During both the preliminary
and detailed design phases, software practices
such as inspections and walk-throughs (which
will be discussed in detail later in this chapter)
will be immensely useful in finding errors or
inconsistencies in the overall system design.

Coding initiates the process of building sub-
modules. These sub-modules are progres-
sively combined with other sub-modules to
form larger and more complex modules and
blocks of software (Figure 6-3). With each
submodule or unit coded, individual and

6-3

ness Review (TRR) has been conducted. The
purpose of the TRR is to determine whether
the contractor has completed his own testing
and has the resources and the plans and pro-
cedures to formally demonstrate to the

task WARNING is
entry FAULT_IN_SENSOR;
entry OUT_OF_LIMITS (ON_SENSOR: m SENSOR_NAME);

end WARNING:

task RECORDING s
entry LOG_STATUS (OF_SENSOR: in SENSOR_VALUE;
WITH_VALUE in SENSOR_VALUE;
WITH STATE in SENSOR _STA'TE)

end RECORDING,

Fig. 6-3 Coding

Chapter 6 Software Test and Evaluation

government that the software works as an
entity.

Software integratioi testing exercises asingle
Computer Software Configuration Item
(CSCI). This type of testing usually requires
a dedicated mainframe computer since other
software or subsystem simulations will have to
be used (Figure 6-4). The actual hardware
typically is not available at this time and a
simulation or emulation is substituted. The
target computer simulation is called an inter-
pretive computer simulation (ICS). One of
the primary purposes of this detailed software
system testing is to ensure that the software is
inherently sound and that it demonstrates the

HOST COMPUTER

-

ez

Y \1_ = =1@_9|

OPERATOR'S
COMPUTER CONSOLE

SIMULATION

Fig. 6-4 Software Integration Testing

notential for performing its function once it is
married to the system hardware in a test setup
called a hot bench.

Hot bench integration or testing is perhaps
one of the most frustrating parts of software
T&E (Figure 6-5). Once the software is mar-
ried to the actual hardware, the difficult part
begins. The first step is to establish a hot
bench or Systems Integration Lab (SIL), as it
is sometimes called. The next step is to popu-
late the SIL with actual black boxes, cable
runs, power supplies, displays and system
computers, configured as closely as possible
to the final article. Unfortunately, a

O-4

INU [FCS J COMM l C&DJ XX
] Data | Buss W
== ‘/
y Y]
PERIPHERALS i Bﬂ
M Ve Lo
0.:
44
FUGHT COMPUTER
TEST
PLAN . e =15
TEST Jo//sm— =
PROC OPERATOR'S — L_} 1——%_:;
CONSOLE ~ MAINFRAME

Fig. 6-5 Hot Bench Integration

laboratory environment can only ap-
proximate the real world so a laboratory is a
relatively artificial and benign environment.
In spite of this, hot bench testing is the key to
proving that the hardware and software
designs satisfy system requirements.

System DT&E and OT&E can begin once hot
bench testing is successfully completed (Fig-
ure 6-0). Although the two tests are some-
times combined because of schedule
constraints, the objectives of the tests are dif-
ferent and the kinds and amount of data re-
quired by each is different. Usually the level
of detail required for DT&E is much more
than that required for OT&E. This means that
the hardware and software testing required

SAMs TEST CENTER

Fig. 6-6 DT&E/OT&E Testing

for DT&E is usually more stringent and more
extensive than that required for OT&E.

6.2 COST OF SOFTWARE FIXES

Before discussing the details of software test-
ing, it would be instructive to examine the cost
of removing errors from software. Figure 6-7
shows the cost of a typical software develop-
ment project broken down by the various
phases of development [3]. The cost of finding
and correcting a software problemin the early
phases is insignificant when compared to the
cost of finding and correcting the same prob-
lem once the software has been delivered.
Although these are not absolute numbers that
apply all development projects, the message
is clear; "Spend more time up front finding
errors and you will reduce your overall cost."

A question that may be asked is, "Why does it
cost so much less to find and correct errors in
the earlier stages of software development
than it does after system delivery?" Several
reasons that have been put forth:

(a) At the beginning the pressure is less in-
tense. Since there is little or no code to ex-
amine, there is more time to look for the
problem.

Chapter 6 Software Test and Evaluation

(b) The amount of paperwork and the amount
of detail to be examined is much less. Top-
level design requirements, interfaces, and test
requirements are being examined without
regard to implementation details.

(¢) Errors introduced at the top level, such as
in the requirements or overall system design,
will be propagated manifold into the detailed
design and coding of the discrete software
components.

(d) Software programmers seem to undergo a
psychological change once code has been
generated and computer based testing has
begun [4]. They seem to be less sensitive
about their mistakes when dealing with re-
quirements and design considerations than
they are about errors in coding,.

(e) Major resources are tied up in testing once
computer based testing begins. Mainframe
computers, weapon system hardware, tech-
nicians, and system analysts can escalate cost
very quickly. Onice a problem is found there is
tremendous psychological pressure to correct
it as soon as possible. Unfortunately, the
amount of paperwork involved in the correc-
tion procedure is immense and the impact of
one software error usually propagates

SOFTWARE DEVELOPMENT DEV $
REQUIREMENTS ANALYSIS 5%
DESIGN 25%
CODE & UNIT TEST 10%
INTEGRATION & TEST 50%
VALIDATION & DOCUMENTATION 10%
OPERATIONS & MAINTENANCE

ERRORS ERRORS RELATIVE
INTRODUCED FOUND COST OF ERRORS
55% 18% 1.0
30% 10% 1-15
10% 50% 15-5.0
5% 22% 10- 100

Fig. 6-7 Costs of Software Fixes

Chapter 6 Software Test and Evaluation

throughout other modules. Corrections are
not always complete or totally accurate [4].

In summary, it is very clear that the greatest
return on the dollars invested in finding and
correcting software problems occur during
the early stages of software development: the
requirements and design phases.

6.3 SOURCES OF SOFTWARE ERRORS

Jf one examines where the typical software
errors occur, it issomewhat surprising to learn
that they also occur mostly in the early stages
of software development. As can be seen
from Figure 6-8, about 40% of all software
errors are attributed to problems in specifica-
tion. Twenty-eight percent are due to incom-
plete or erroneous specifications and 12% are
due to intentional deviations from the
specification. Violations of programming
standards contribute another 10%. Errors
due to coding and programming mistakes
(i.e., erroneous data accessing, erroneous
logic, erroneous computations, improper in-
terrupts, wrong constants and data values)
comprise only about 38% of all errors [5].

Comparison of this figure with the previous
figure is very revealing. It tells us that the bulk
of the errors occur during those phases of

CATEGORY PERCENTAGE
INCOMPLETE/ERRONEQUS SPEC 28
INTENTIONAL DEVIATION FROM SPEC 12
VIOLATION OF PROGRAMMING STDS 10
ERRONEOUS DATA ACCESSING 10
ERRONEOQUS LOGIC 12
ERRONEOUS COMPUTATIONS 9
INVALID TESTING 4
IMPROPER INTERRUPTS 4
WRONG CONSTANTS/DATA VALUES 3
DOCUMENTATION 8

TOTAL 100

Fig. 6-8 Sources of Software Errors

6-6

software development when errors are the
least expensive to fix. The conclusion is very
obvious: if more time and effort are put into
requirements definition and design, fewer
mistakes will be made and those that are made
will be cheaper to correct. The more you pay
now, the less that you will pay later.

6.4 TYPES OF TESTING

Software testing can be broken up into three
general categories: human testing, software
only testing, and integration testing.

6.4.1 Human Testing

Human testing is defined as an informal, non-
computer-based method of examining com-
puter program architectures, designs and
internal and external interfaces for the ex-
press purpose of determining how well they
reflect overall system requirements [4].
Human testing is comprised of inspections,
walk-throughs, desk checking, peer ratings,
and design reviews,

6.4.1.1 Inspections

During an inspection, the programmer ex-
plains to a group of three or four peers the
overall approach, rationale, choice of algo-
rithms, logic, and overall module structure of
the program. The purpose is to ensure cor-
rectness and consistency in structure, coding
conventions such as variable definitions and
use, programming standards and procedures,
and overall unity of design. At the end of the
inspection, which usually lasts about two
hours, all errors, inconsistencies, and omis-
sions are listed and given to the programmer
for correction. Under no circumstances is the
list of errors ever allowed to be reviewed by
the programmer’s supervis . or anyone else.
The purpose of the inspection is to improve
the final product in a non-threatening en-

vironment and not to appraise the
programmer’s performance. Statistics are
also collected in order determine the quality
of the product and the progress being made in
the development process.

6.4.1.2 Walk-throughs

During a walk-through, the group of three or
four peers come prepared with test cases so
that they can "play computer" and mentally
step through the design and the logic flow. As
is done in inspections, all errors, inconsisten-
cies, and omissions are summarized and given
to the programmer for correction. The results
are also confidential and are never seen by
anyone outside the group, including the
programmer’s supervisor. The climax of both
inspections and walk-throughs is a meeting of
the minds between all the participants [4].
Statistics may once again be gathered.

6.4.1.3 Desk Checking

Desk checking is the least productive of all
human testing since it involves the program-
mer sitting at his desk and reviewing his work.
It is human nature to miss errors that one has
committed. Desk checking, however, can be
performed individually at any time and
without the need for convening a meeting
with other individuals. It is better than doing
nothing at all.

6.4.1.4 Peer Ratings

Peer ratings involve a group of programmers
reviewing each other’s work. Each program-
mer anonymously submits one or twe
modules for review. The peer group reviews
each module and rates the overall quality
while suggesting improvements. Results are
tabulated and passed around. Like inspec-
tions and walk-throughs, peer reviews are

6-7

Chapter 6 Software Test and Evaluation

very beneficial in improving commonality,
overall consistency, and program integrity.

There are other benefits to inspections, walk-
throughs, and peer ratings beside the obvious
one of finding errors and inconsistencies. The
participants themselves benefit because they
are exposed to other programming styles and
new techniques which they may want to adapt
for their own use.

6.4.1.5 Design Reviews

PDRs and CDRs are not normally considered
by the government as part of the test process.
This is unfortunate because, to the contractor,
completion of the PDR is a signal that the
preliminary design is acceptable and that he
can procced with the detailed design.
Likewise, completion of the CDR is the
contractor’s signal that the detailed design is
acceptable. Very often the government fails
to perform a thorough review of all the
documentation submitted prior to either the
PDR or the CDR., PDRs and CDRs may be
conducted superficially and the contractors
may proceed into detailed design without a
thorough review of the overall design and
without assurances that overall system re-
quirements are reflected in the design.

There is no immediate solution to this prob-
lemsinceitis often due to the lack of adequate
manpower. Documentation review prior to
design reviews may always be inadequate. Al-
ternatives are to thoroughly review only criti-
cal portions of the design, thoroughly review
only the module interfaces, or augment the
engineering staff with outside help. If the
funding is available, an Independent Verifica-
tionand Validation (IV& V) contractor canbe
used. Outside consultants can be brought in,
or heip can be sought from the various
military labs or software support agencies.

Chapter 6 Software Test nnd Evaluation

Anothersolution s to hold incremental PDRs
and CDRs. By spreading out the reviews the
available staff can pay more attention to
details. This, of course, has to be weighed
against overall schedule slippage. One must
remember, however, that an incompletely
reviewed software design is guaranteed to in-
troduce schedule slippage anyway. As the
commercial states, "You can pay me now, or
you can pay me later."

6.4.1.6 Benefits of Human Testing

Human testing is a very productive undertak-
ing. In his book, The Art of Software Testing,
Myers [3] discusses the following positive
qualities of human testing:

(a) Experience has shown that it is quite effec-
tive in finding errors and it should be used on
every programming effort;

(b) Since it is usually applied between the start
of design and the beginning of computer
based testing, it substantially contributes to
productivity and reliability;

(c) It may find 30 to 70% of design and coding
errors;

(d) There is a higher probability of proper
error correction since they are found early in
the development phase. Programmers tend
to make more errors correcting errors found
during computer-based software testing;

(e) It finds errors in clusters or batches as
opposed to computer-based testing which
finds errors one at a time;

(f) It lowers the cost of software testing since
the costs involved are a few programmer’s
man-hours as opposed to the computer
resources and the large number of personnei
involved in computer-based testing.

6-8

In summary, human testing provides the
highest return on your investment of valuable
software test and evaluation dollars.

6.4.2 Software Only Testing

Software only testing is defined as that testing
that is performed solely for the purpose of
determining the integrity of the software
when it is tested as an entity. In other words,
one wants the ussurance that the software
works before it is married to the hardware.
The reason for this is that software is usually
integrated with newly developed hardware
which has its own maturation problems. In-
tegrating untested software with unproven
hardware makes it very difficult to determine
where the problems lie: hardware or software.

6.4.2.1 Black Box or Functional Testing

Black box testing entails testing a particular
software unit without any knowledge about
the internal structure or logic of that unit
(Figure 6-9). Various test cases are generated
based on the specification and the require-
ments of the unit. The correctness of the
software unit is determined only by the output
data generated in response to the input data.
This is done by designing the test cases with
two types of input data. The first type of input
data falls within the boundaries expected by
the software unit and the second type of data
falls outside these boundaries. The reason for

INPUT
DATA

Pp»- OUTPUT

DATA

SPEC

L

Fig. 6-9 Black Box or Functional Testing

the latter is that oftentimes it is those
parameters (i.e., invalid) that do not fall
within the expected limits that cause the big-
gest problems. It is an old dictum in software
development that ensuring that the software
doesn’t do the unexpected is as important as
ensuring that it does what it is supposed to do.

The primary objective of software testing is to
demonstrate performance and reliability.
Often it is useful, if not essential, to approach
software testing (particularly at the lower
levels) with the attitude of "Let’s try to break
it." This is to demonstrate the ability of the
software to recover from abnormal events or
to degrade in a graceful or controlied manner.
Since complete and exhaustive testing of any
practical size software is impossible, one must
develop an acceptable level of maturity in the
software. This is often measured by the num-
ber of faults that are occurring during test. As
software matures, the number of faults dis-
covered decreases and, as a minimum, the
software becomes controllable (i.e., the con-
figuration is stable).

The reason that exhaustive testing of software
is a practical impossibility is that the number
of valid and invalid test cases is infinite. For
example, if a certain input parameter should
fall within the values of 1 and 10, truly exhaus-
tive testing would test all the values between
1and 10. This is clearly an impossibility since
there are an intinite number of valid values
between these two limits. Likewise, exhaus-
tive testing of all invalid p~rameters is also
impossible because these are also infinite.

To summarize, software of any practical size
can never be exhaustively tested and can
never be guaranteed to be totally error free.
Because of this, the goal of software testing is
to demonstrate a certain level of performance
so that there are reasonable assurances that
the software performs according to the

6-9

Chapter 6 Software Test and Evaluation

specification. How reasonable the assurances
are is a simple matter of economics, how
much can one afford to test?

6.4.2.2 White Box or Structural Testing

Unlike black box testing, white box testing is
concerned with the internal structure and
logic of the software unit. The test cases are
generated using a listing of the code as op-
posed to the requirements specification (Fig-
ure 6-10). Generation of the input data,
however, is very similar to the generation of
input data for black box testing. Both valid
and invalid input data are generated for the
test cases and the output data is analyzed to
determine the correctness of the computer
code. Exhaustive white box testing is also
prohibitive for the same reasons that exhaus-
tive black box testing is impossible.

Exhaustive white box testing, however, does
have another dimension other than all the
possible valid and invalid input parameters.
Since the tester has knowledge of the internal
logic and program structure, a goal would be
to test all possible logic paths that exist within
the code. Although all paths can be executed,
it is impossible to test all combinations. As an
example, consider the logic flow of Figure
6-11 which shows asimple logic sequence that

INPUT N OUTPUT

pDATA P !] - - DATA

‘ : .
o | U |

A\
)

LISTING

e T

Fig. 6-10 White Box or Structural Testing

Chapter 6 Software Test and Evaluation

contains two loops that execute up to 12 times.
This sequence contains 10 raised to the 20th
power different finite paths. If one could test
one logical path every nanosecond (trillioath
of a second), it would take 4000 years to test
all the different paths. Using a real example,
it would take over 60,000 years to perform a
similar type of exhaustive test on the Titan 111
missile guidance software.

The goal of white box testing then is also to
minimize the number of errors in the
deliver.d code and to provide reasonable as-
surances that the software performs accord-
ing to the specification.

6.4.2.3 Top-Down/Bottom-Up Testing

In actual practice the best course of action is
to develop a software test strategy that incor-
porates both black bux and white box testing
philosophy. Test procedures, therefore,
should make use of both the specifications
and the existing listing. Regardless of what
test philosophy is used, the choice remains
whether to parform bottom-up testing or top-
down testing.

Bottom-up testing begins with the lowest level
module or unit (i.e., one that does not call any
other module or unit) and tests them through
the use of dummy modules or units called

LOGICAL
<_ 12 TIMES f 12 TIMES
/’jﬁ}\ ‘\ }ui ; i .
K7 U R TR S
ﬁJ'L}jJ>L14w5iJﬁJfLJ~J>LJ>
‘\ B l 1
¥y Yooy

20
® 10 DIFFERENT PATHS

@ 4000 YEARS @ 1 LOGICAL PATH PER NANOSECOND

Fig. 6-11 Software Complexity

6-10

"drivers" (Figure 6-12). These drivers are
coded and used for the specific module test
and then replaced when the next higher level
module is coded and integrated.

Top-down testing begins by testing the
highest level module first and then progres-
sively integrating and testing lower level

DRIVER
o
S SN N
[DRIVER } [MODULE
I
e | -
[MODULE } { MODULE MODULE

Fig. 6-12 Bottom-Up Testing

modules. A higher level module requiring
lower level modules uses dummy modules
that are called "stubs" (Figure 6-13). The stub
may be as simple as sending a message such as
"This stub is a replacement for the sorting
module" or as complicated as performing
dummy commands to simulate actual process-
ing times.

There are benefits and problems associated
with both approaches. In the bottom-up ap-

e |

exec |
. U T
| MODULE | {_M9$9#%“% | stus_ |

L . - 1 -

| _stus |

Fig. 6-13 Top-Down Testing
proach a substantial amount of time is spent
in designing, coding, and testing module
drivers. Since these drivers will only be used
for testing, it is somewhat wasteful of a
programmer’s time. In addition many sig-
nificant timing problems may be masked and

not discovered until late in the test cycle when
both schedules and resources are tight. On
the plus side, if the driver was properly
designed, the niext higher level module can be
tested with some assurances that the lower
level modules are correct.

In the top-down approach, there is a tendency
to code the easier modules first. Often com-
plex and critical modules are not coded and
tested until late in the test cycle because of the
difficulty in predicting module complexity.
These modules may sometimes require more
time and energy than was initially planned or
is currently available. On the plus side, once
a higher level module is coded and tested, it
is repeatedly tested as more and more stubs
are replaced by fully functioning modules.
This repeated testing will test the internal
consistency of each module and its interface
with the rest of the software. It will also reveal
major timing problems very early in the test
cycle while there are sufficient resources to
adequately solve major problems. This evolu-
tionary approach helps to build up maturity
and confidence in the software.

In a manner analogous to black box and white
box testing, the testing philosophy should in-
corporate both top-down and bottom-up test-
ing. The most complex and critical modules
may be designed and coded from the bottom-
up and the rest of the system can be designed
and tested from the top-down. The key is to
accurately determine the critical and complex
modules; this is not always an easy task.

6.4.2.4 Software System Testing

Integration and testing of the software as an
entity can begin once all the modules in the
configuration item have been coded and in-
dividually tested by the programmer. When
you test the software as a system, you are not
trying to duplicate the results of the various

6-11

Chapter 8 Software Test and Evaluation

lower level tests. The main purpose of the
software system test is to ensure that the
coded software, meets the overall perfor-
mance objectives of the software require-
ments and system specifications. In other
words, does the assembled software package
meet the overall system requirements?

In order to conduct software system tests, it is
necessary to use the target computer or to
emulate/simulate it in the software worksta-
tion or mainframe. One must also simulate
the rest of the hardware and the external en-
vironment (Figure 6-14). In addition large
amounts of data may have to be generated and
introduced into the software according to ap-
proved test plans and procedures. Since the
simulations required are sometimes exten-
sive, the software tester must have assurances
that the simulations are correct. This may not
be simple. Lack of adequate simulations is a
major contributor to delays in software system
testing. If the program is sharing computer
resources with other programs or organiza-
tions, allocation of computer time and
priorities must be carefully considered. Many
programs have been delaycd by too many or-
ganizations vying for the same resources.

HOST COMPUTER
T B [
DATA !} I , ‘ Hlll . Im!
SIW it 1 i ‘l
L
; : | H ! I
! '
- . j) W x
} {) S xli hl jneamrs |
o | e
TARGET OPERATOR'S ’
COMPUTER CONSCLE
SIMULATION

Fig. 6-14 Software System Testing

Purchasing, installing, and checking out
another computer system takes months and
leasing time on an off-sitc computer is not

Chapter 6 Software Test and Evaluation

only expensive but also slows down the turn-
around time.

6.4.3 Integration Testing

Upon completion of software system testing,
systems developers embark on perhaps the
most difficult, time-consuming and frustrat-
ing part of integrated testing--hot bench test-

ing.
0.4.3.1 Hot Bench Testing

If the system software works when tested as a
CSCIl, the next step is to marry it to actual
system hardware configured in a test setup
known as a hot bench (Figure 6-5). Other
common names for the hot bench are systems
integration lab (SIL) or systems integration
facility (SIF). The objective is to test the
software in a laboratory environment which
closely approximates the actual system to be
fielded. The hot bench will include the black
boxes, cable and wire runs, data busses, and
any ancillary equipment required to test the
system (e.g., terminals, printers).

Once you start testing the software with real
hardware, you will discover that the real world
is a very "noisy" environment. Problems that
are due to external causes will be propagated
throughout the hot bench. For example, a
large air conditioning compressor kicks in or
the heavily used copying machine next door
induce large transients into your equipment.
Electrical transients in digital system can cre-
ate unwelcome behavior. Sensitive instru-
ments are affected by stray radio frequency
(RF) signals and computers do unpredictable
things when the humidity climbs above a cer-
tain threshold level. Couple this with the
traditional difficulty encountered in deter-
mining whether a problem is caused by the
hardware or the software and one soon real-
izes that an inordinate amount of time is spent

chasing ghosts, random malfunctions, and
other elusive spirits.

Since this testing usually takes place towards
the end of Full Scale Development and coin-
cides with the initial phase of Produc-
tion/Deployment, test personnel are vying for
resources with various other groups. This
means that the available black boxes are in
demand by the production people, who are
attempting to build the systems, the Automat-
ic Test Equipment (ATE) folks, who are
building the automated software to test these
black boxes, and the test personnel conduct-
ing quality, environmental and stress tests.

Obtaining these black boxes may become very
difficult, and a lack of adequate backups for
failed components is a major contributor to
test delays. Because of the usually high cost
of these items, early planning for these assets
will not solve all the availability problems.
One may not be able to afford to buy more of
the hardware required. A compromise is to
share the black boxes. Test schedules are
often driven, not by the complexity of the
tests, but by the availability of resources.
Asset management is an important aspect of
any hot bench testing.

Other factors which must be considered are
the facilities and the scheduling of these
facilities. To perform hot bench testing the
facility must have adequate power and air
conditioning to handle the anticipated power
and heat loads. TEMPEST requirements, as
well as other security requirements, must be
adhered to if the testing will generate or use
classified data. All of this requires careful
planning since design and development
schedules may change and the facilities may
not be available when they are needed. In
addition, if the hot bench testing slips too
much, conflicts may arise with other programs
which may have planned to use the same

facility space. Itis a good idea to plan for these
unexpected contingencies.

Many of these problems can be minimized if
the test requirements and resources are ade-
quately addressed in the TEMP and the
Software Test Plan.

6.4.3.2 DT&E/OT&E Testing

The next phase of testing is by far the most
expensive of all. It involves performing field
tests in an environmentclosely approximating
the environment of the anticipated threat. If
flight testing is involved, one must include the
test aircraft, chase aircraft, test ranges, logis-
tics support for all the aircraft and test equip-
ment, large data reduction systems and
software and the hundreds of personnel re-
quired to conduct and coordinate the various
tests (Figure 6-6). Clearly hundreds of
thousands to millions of dollars are tied up in
field testing major systems.

Logistic support for DT&E must also be
planned. Failure rates for electronic equip-
ment must be anticipated and provisions
made for backups and repair of failed com-
ponents, Repairs may be done organically for
OT&E but for DT&E the repairs are usually
performed by the contractor.

Scheduling of national assets such as the
China Lake Naval Weapons Center or the
Edwards Flight Test Center will have to be
done years in advance when the crystal ball is
pretty cloudy. Schedule uncertainties, unpre-
dictable weather and unforeseen technical
problems will force the test manager to con-
stantly generate contingency test plans to ac-
commodate program requirements with
those of other legitimate DOD users requir-
ing the use of the same national assets.

6-13

Chapter 6 Software Test and Evaluation

Data reduction can be a significant bot-
tleneck. During any major field testing ac-
tivities, prodigious amounts of data can be
generated. Adequate computer resources
and sufficiently tested support software pack-
ages are required. It is not uncommon to wait
one or two weeks for data to be reduced and
presented in a format suitable for engineering
analysis. If in addition, you are required to
have organizations other than your own (i.e.,
another service facility) record data for your
test, additional bureaucratic delays can fur-
ther add time to your test program.

The most important thing, however, is to real-
ize that field testing should confirm hot bench
results. If you’re not ready, don’t fly. If it
doesn’t completely work in the lab, don’t
waste program resources using the field as a
laboratory.

6.5 TEST TOOLS

It is an ironic fact that the very industry that
has automated major segments of other in-
dustries, has itself failed to automate. Thanks
to computers and software, robots and auto-
mation are major players in such diverse in-
dustries as automobile manufacturing,
publishing, and textiles. When it comes to
software development, however, it is all vir-
tually manual labor. It still requires a person
to translate a set of requirements into a set of
computer instructions. Computers that
generate code directly from human languages
are still far in the future.

This doesn’t mean that there are no software
development tools. Numerous tools exist
and, although they all require extensive
human participation, they are, ncvertheless,
very useful. Test tools can be classified into
the following categories:

Chapter 6 Software Test and Evaluation

Requirements’ Analysis Tools - These tools
provide the capability to incrementally state
system requirements and to systematically
check for consistency and completeness.

Text Editors - Tools used to insert, delete, or
manipulate portions of any text such as
documentation, test data or code.

Test Generators - Allow test drivers to be
developed in a systematic and standardized
fashion. Somectimes can be automatically
generated during the coding process.

Static Analysis Tools - Perform a static
analysis of a particular program to produce a
listing of questionable coding practices,
departures from programming and coding
standards, isolated code, symbol tables, cte.

Debugging Tools - On-line tools that enable
programmers to interact with their program
during program cxecution in order to assist
them in locating errors.

Environmental Simulators - Allow for the
simulation of a particular systemenvironment
when testing in the real environment is either
impractical or too exj 2nsive.

System Simulators - Simulations of other sys-
tems which interact with the system under
development or simulations of major subsys-
tems not yet available.

Data Reduction/Analysis Tools - Software
and computer packages that allow large
volumes of data to be analyzed and reduced
to a format easily digestible by engincers and
Managers.

6.6 DEBUGGING

Debugging is the activity of finding and cor-
recting a known error. Itis performed after a

6h-14

test run has uncovered errors. Methods for
debugging include: brute force, induction,
deduction, backtracking, and testing [4].

The brute force method, although requiring
little thought, is the most inefficient of all
debugging methods. This is because it usually
takes the form of (1) memory dumps, (2) scat-
tering print statements in the code or (3) using
automated debugging tools which require
lubor intensive analysis to trace the error.

Debugging by induction requires careful
thought and follows the classical inductive
method of examining the data, looking for
relationships, devising a hypothesis and prov-
ing the hypothesis by locating the error.

Debugging by deductive reasoning proceeds
from general theories or premises about the
ause of an error, eliminates and refines the
premises, arrives at a conclusion and finds the
crror.

Backtracking involves starting at the point
where the incorrect result was produced and
reverse engineering the program to discover
the source of the error.

Debugging by testing involves the generation
of small samples of test data in an attempt to
isolate the problem.

Of all programming activities, debugging is
probably the most disliked. This is because
debugging is a mentally taxing effort and quite
often it is very damaging to sensitive egos that
see programming errors as personal failures
or indictments of their programming com-
petence. It can be very difficult because many
faults can be caused by errors in a program
statement anywhere in the entire program.
Developments in the state-of-practice of
software engineering are minimizing these
types of errors.

There are certain debugging principles that
have arisen out of the collective experience of
programming [4]. These are:

(a) Be careful when using debugging tools.
They often introduce more problems then
they solve and often require a non-trivial in-
vestment of time in order to become profi-
cient with the tool;

(b) Experience has shown that where there is
one bug, there are usually more because it has
been shown that errors tend to cluster;

(c) The probability of a fix being correct is
never 100%. Correction of an error often
introduces additional errors requiring further
debugging;

(d) It is always best to change the source code
and not the object code. Correcting the object
code throws the source code and the object
code out of sync and may produce disastrous
results elsewhere in the program or later on
in the execution;

6.7 MANAGEMENT GUIDANCE

The following suggestions provide some
general guidance during the planning and ex-
ecution of software test and evaluation.

(a) If an IV&V organization is going to be
used, bring them on board early, preferably
during the Concept Exploration phase. Just a
handful of people (2-3) performing an IV&V
role can be invaluable.

(b) When evaluating contractors’ proposals
and Software Development Plans make sure
that some organization other than the one
developing the software performs the testing.
The developing organization may develop
test plans, but it should not test its own

6-15

Chapter 6 Software Test and Evaluation

software. This independence can be internal
or external to the contractor;

(c) As part of the evaluation process, insure
that a good quality assurance organization is
in place. Since software development is so
labor intensive, it is important that an or-
ganization exists to impose programming
standards, procedures and regimentation on
the development process and to cvaluate both
the process and the product;

(d) Perhaps one of the most important things
to remember is that failure to impose strict
discipline into the software development
process is the quickest way to ensure disaster.,
This discipline must exist in the program of-
fice as well. The program manager must be
absolutely resolute in insisting that a software
developer complete an activity before
proceeding to the next one. If the developer
i5 not ready for a PDR or CDR, then res-
chedule it. If they haven’t finished software
testing, then don’t proceed into hot bench
integration.

(e) The program office should have the even-
tual user, the supporting activity, and the
IV&YV contractor (if there is one) participate
in the thorough review of the Software Test
Plan. They should critically examine
whether:

- all test resources have been identified;

- all the test software tools are available, are
matured and currently in use;

- the test schedule is adequate. Remember
that software development is almost always
on the critical path;

- the developer really understands software
testing principles;

Chapter 6 Software Test and Evaluation

- testing is complete and has demonstrated
operational performance and reliability.

(f) Seek help at the very beginning of the
program don’t wait until software develop-
ment is in trouble because then it is too late.
It doesn’t hurt to have an omside organization
examine the status of the software at critical
intervals during the development cycle;

(g) Insist that program office personnel attend
software training courses on a periodic basis,
especially young software project officers.
Your program will derive benefits by allowing
your personnel to keep up with software prac-
tice and technology.

(h) Make absolutely sure that the program
office engineering and software personnel
perform a thorough review of;

- preliminary software design;
- test plans and procedures;

- traceability of requirements from the sys-
tem specification all the way down to the test
procedures;

- the developer’s configuration management
organization and procedures. On a major
software development, keeping track of the
various versions of software is a non-trivial
task. Many major test programs have been
severely impacted because the wrong version
of software has been tested.

(i) Never, never, never test software that con-
tains patches! A patchis defined as a piece of
machine language code that is overwritten
over an existing piece of object code. Testing
software with patches is nothing more than a
game of Russian Roulette. You may get by

6-10

once, but eventually your test program is
going to blow up in your face! Insist that
software errors be corrected at the source
code level. Treat error correction as
redevelopment by tracing all the way back
from the system requirements through design
and by ensuring that the documentation is
updated.

The only time a software patch is justified in
a software test program is when it is necessary
to disable a function for safety reasons or
when it is impossible to conduct a particular
test without the use of a patch. At any, rate
once these tests are over get rid of the patch!

Don’teven think about fielding into an opera-
tional environmentany software package con-
taining patches!

6.8 REFERENCES

1. AFR 800-14, Lifecycle Management of
Computer Resources in Systems, 29 September
1986.

2. Buhr, RJ.A,, System Design With Ada,
Englewood Cliffs, NJ, Prentice-Hall, Inc,,
1984.

3. McCabe, Thomas J. and Gordon Schul-
meyer, "The Pareto Principle Applied to
Software Quality Assurance," Handbook of
Software Quality Assurance, Ed. G. Gordon
Schulmeyer and James 1. McManus, New
York, NY, Van Nostrand Reinhold Company
Inc., 1987.

4. Myers, Glenford J., The Art of Software
Testing, New York, John Wiley & Sons, 1979.

5. AFSCP 800-14, Software Quality Indicators,
January 1987.

CHAPTER 7

Chapter 7 Post Deployment Software Support

POST DEPLOYMENT SOFTWARE SUPPORT

7.1 BACKGROUND

More than two thirds of the DOD’s expendi-
ture for software is for Post Deployment
Software Support (PDSS) [1]. The
Electronics Industry Association (EIA) has
predicted that Mission Critical Computer
Software could cost the Depurtment of
Defense about $36.2 billion by the year 1992,
Software costs are rising and will ccnunue to
rise at a proportionately greater rate than
other system costs. The cost of software will
continue torise dramatically unless corrective
measures are taken to include: a greater
awareness by program managers about the
problems faced by software engineers; an un-
derstanding of the problems that arise in the
software development process and how they
can be corrected; and a change in the their
attitudes about software support.

7.2 PROBLEM AREAS

As discussed in Chapter 2, the growth in the
ise of computer technology, especially in the
last twenty five years, has drastically increased

7-1

the requirements for software. In the 1960s
the Air Force’s F-111 aircraft required less
than 100 thousand software instructions. In
the 1970s the Navy’s P-3C aircraft required
about 500 thousand software instructions. In
the 1980s the B-1B required over one million
software instructions just for the operational
flight programs. Projections for the U.S. Air
Forces’s Advanced Tactical Fighter (ATF)
call for about four million software instruc-
tions and the Space Station calls for about 80
million software instructions. Software re-
quirements for the next generation of systems
seem to be unlimited. These trends in fielded
software are depicted in Figure 7-1[1].

This increase in the amount of fielded
software has obviously increased the require-
ment for software support services. However,
this increase in software support and the lack
of qualified personnel to provide these ser-
vices, make software support more difficult to
manage. Dr. Edith Martin in a speech
presented in 1984 to the Joint Logistics Com-

Chapter 7 Post Deployment Software Suppornt

SKYLAB 2

10M |- . ‘SHUTTLE/OPERATIONAL

g SHUTTLE/OFT
i APOLLO 7 ' APOLLO 7 NS —
MANNED SPACE MISSION CONTROL
N (BYTES)
S S ae A
GEMINI 12
> ®
R M SHUTTLE/OFT
- GEMINI3
c .36 MANNED SYSTEMS
I A — (INSTRUCTIONS)
S-3A U
| V' GALILEO ‘
o] APOLLO 114
N - A £ pepgiinG i (ED)
100K MERCUAY 3 p.ac u A F-15
S u o
‘ GEMINI 8 A SKYLABZ 1iraN 34D (US) e e e o e
Fe114 P UNMANNED SYSTEMS
0 [APOLLO 7 (INSTRUGTIONS)
R F-111 VIKING S R
& C* PERSHING I1(AD)
B A-TD/E TITAN HIC .
CEMN A @ oenTCd
Y 10K .
VOYAGER
T
E PERSHING 1A POSEIDON C-3
S
PERSHING 1 MARINER
TITAN It ’ VENUS MERCURY
1k L ! , 1 ¥ | | I ; 1 | | 1
60 70 80 20
DATE OF FLIGHT

Fig. 7-1 Trends in Software

manders Workshop entitled "The Relation-
ship Between PDSS and Advanced Technol-
ogy," estimated that the requirement for
software support personnel was increasing at
a rate of 12 percent per year. However, the
availability of qualified personnel was only
increasing at a rate of 4 percent. If one as-
sumes an annual productivity rate gain of four
percent, there will exist a four percent
shortfallin the amount of available personnel.
Based on these estimates, and assuming noth-
ing else changes, by 1990 the number of per-
sonnel required will exceed the number of
personnel available by one million. An effec-
tive way must be found to control both cost
and schedule and to properly train, develop,
and retain a cadre of software professionals
for both the development of new software and
the support of existing software. Possible
solutions to these problems will be discussed
later in this chapter.

The EIA study discussed in Chapter 2
predicted that by 1992 software will cost the
DOD about 29.1 billion dollars, and computer
hardware will cost about 6.1 billion dollars.
Figure 7-2 indicates that software support ser-
vices will account for about seventy percent of
this anticipated software cost and software
development will account for the remaining
thirty percent. It is apparent that if something
is not done quickly, the government will not
be able to afford the software required by
modern weapon systems.

The problem of controlling cost is com-
pounded by the fact that software support
funding is fragmented. In 1984, the In-
dustry/Government Workforce Mix Panel of
the Joint Logistics Commanders (JLC)
Workshop on PDSS [2] addressed the Air
Force funding of system acquisition and
software support. Even after a system is

Chapter 7 Post Deployment Software Support

FY-90 DOD

COMPUTER BUDGET

COMPUTER
HARDWARE

SOFTWARE
$25.68

e l

SOFTWARE LIFE CYCLE

COST

W

SOFTWARE

DEVELOPMENT
SOFTWARE/ 0%
SUPPORT
70%

Fig. 7-2 Software Costs

deployed, hardware and software are
budgeted, funded, and prioritized by separate
processes and channels. Multiple procedures
for budgeting and funding often are required
for the same item, as opposed to separate
budget and funding codes for separate but
related items. All of this creates confusion for
the program manager or anyone else trying to
get a handle on life cycle costs. Actual cost
tracking can be difficult to deal with and re-
quires careful coordination of one-year R&D
software money with three-year hardware
procurement money for system modifica-
tions. Further difticulties can develop when
one considers that PDSS may be divided be-
tween depot and field-level activities.

The Air Force has problems in clearly defin-
ing the responsibilities of the depot and those
of the field activities. This not only makes it
difficult to split up the workload, but adds to
the funding problem. The other services have
similar problems that make the funding
process difficult. If the government is to get a
handle on cost, the method used to fund the
development process and PDSS must be
streamlined. There should be a common
budgeting procedure used by all of the ser-

7-3

vices and by all levels within the government.
These procedures should identify appropria-
tions, budget programs, program elements,
and specific funding codes for weapon sys-
tems using a single, simplified process for set-
ting priorities. If this is accomplished, the
government and program managers may at
least get a better picture of the funding issues
while affording them a way to deal with it in
an intelligent manner. The way to deal with
the current situation is to become aware of the
difficulties and to plan in advance the transi-
tion of software support. This is done by
clearly defining the roles and responsibilitics
of the various support organizations, includ-
ing their funding requirements, in the Com-
puter Resources Life Cycle Management
Plan (See Section 7-7).

7.3 MANAGEMENT PERCEPTIONS

One of the realities of life is that people have
perceptions about software which may not be
true. Most people undersiand that hardware
is tangible, material intensive and produced
by machine, while software is intangible, labor
intensive, and mostly produced by hand. They
further accept that hardware deteriorates

Chapter 7 Post Deployment Software Support

over time, is hard to change, requires preven-
tive maintenance, and has relatively high
production costs. Software is believed to have
exactly the opposite characteristics. Software
does improve over time with updates, re-
(uires no preventive maintenance, and has
only trivial production costs, but is never easy
to change correctly. Thesc perceptions tend
to cause management problems and must be
resolved to decrease PDSS costs.

There is a mistaken belief that PDSS is a
trivial task and less important than software
design. Unfortunately, this results in less
qualified personnel assigned to do software
support rather than the more skilled tech-
nicians and managers. The feeling is that
software support personnel should possess
the same skill levels as the local auto
mechanic while software design personnel
should have the skills of automotive en-
gineers.

Another misconception that plagues some
program managers is a lack of understanding
as to what constitutes the supportable

software products. The software iceberg
(Figure 7-3) is a graphic description of some
of the various tools, documentation, etc., that
form the total software package. For the
PDSS facility to properly support the product,
it must have the same basic tools and informa-
tion that was available to the developer. One
should also realize that many of these items
can have their own icebergs. There is a ten-
dency to cut costs in software programs by
cutting out those things that are required later
on in the program’s life cycle. Some program
managers do not fully understand the value of
procuring items such as simulators, editors,
compilers, test tools, other software tools, and
documentation. Some may even feel that
such items are gold plating. The fact is that
without these items software cannot be
properly supported.

7.4 MANAGEMENT CONCERNS

Program Managers must understand the
needs of the user. They are often faced with
the need to change the software because of a
new requirement (e.g., a changing threat) or

APPLICATIONS
PROGRAMS

: HOST COMPUTER(S) [OPERATING SYSTEMS
/ LANGUAGE TRANSLATORS PROGRAM EDITORS TEST TOOLS
PROGRAM LINKERS i SYSTEM SIMULATORS ‘ DESIGN TOOLS
e e S \
i ENVIRONMENT SIMULATORS PROGRAM DESCRIPTION DOCUMENTATION ~

CONFIGURATION MANAGEMENT PROCEDURES

, DIAGNOSTIC SCFTWARE

1

|
! USERS MANUALS
i

TEST PLANS

TEST DRIVERS

g i
|

% FLOW CHARTS l
;
|

PERSONNEL

|

INTERFACE DOCUMENTS i

COMPILERS

DEVELOPMENT TOOLS |

i
! PROGRAM DESIGN DOCUMENTS
i

i 1
t H
EMULATORS \

i

DEVELOPMENT STANDARDS

TRAINING

H
'
)

DEBUGGING TOOLS

Fig. 7-3 The Software Iceburg

7-4

to correct a problem. All program managers
should ensure that the software developed is
supportable, and that the capability to support
the software by the government or industry
exists. This determination of support must
include the people who will actually do the
work as well as the facilities and tools neces-
sary to accomplish this effort. Cost and
schedule are obvious drivers in tie decision
process. However, software considerations
must be put in perspective with the total
weapon system, Any change to the software
may have an impact on the hardware. In ad-
dition, any changes made to the software may
impact other software and/or future system
requirements, just as hardware changes have
impact on the system.

7.5 WHAT IS PDSS?

Software does not fail in the classical sense.
Hardware degrades over time as components
wedr out. A software problem is due to an
error that has existed since its creation.
When a problem caused by a component
failure is found in hardware, the solution en-
tails bringing the item back to the original
configuration. In software when a problem is
found and corrected, a new configuration is
created. Software does not wear out like
hardware; so "software maintenance" is a mis-
nomer. The appropriate name for this effort
is "software support". The Joint Logistics
Commandersin 1984 decided that, inorder to
answer the many questions about software
support, a definition of Post Deployment
Software Support was needed. Further, such
adefinition should provide a uniform basis for
understanding and dealing with software sup-
port issues. The JLCs have defined PDSS as
follows:

"Post Deployment Software Support is the sum
of all activities required to ensure that, during
the production/deployment phase of a mission

7-5

Chapter 7 Post Deployment Software Support

critical computer system’s life, the implemented
and fielded software/system continues to sup-
port its original operational mission and sub-
sequent mission modifications and production
improvement efforts."

This means that software is modified to either
correctaproblemor to add a capability. There
are other ways to look at the various software
support activities other than breaking down
the efforts into modification and the addition
of capabilities. Figure 7-4 [3] looks at two
different approaches. Swanson [4] breaks
down software support into three categorics.
The first category talks about corrective cf-
forts, examples of which might be the corree-
tion of a problem in reading a file in a record
properly, or a failure to test all possible con-
ditions. The second category deals with adap-
tive efforts which include such things as
improving processing speed or adjustments to
add new input or output devices. The last
category includes software that is modified to
make enhancements in response to hew re-
quirements, or to give the operator more
flexibility. Reutter [S]refined these efforts by
breaking them into the seven categories
shown in Figure 7-4. Reutter’s seven
categories separate support from each of
Swanson’s three categories. The intention of
this breakout is to emphasize the communica-
tion between the user and the support activity.
It also shows the importance of planning for
support.

There is some disagreement among software
people as to whether the above efforts should
be called software support or software main-
tenance. The term software maintenance
gives the impression that the effort involves
preventing components from wearing out or
breaking as in the case of hardware, This is
not the case for software and one of the
reasons why the JLCs use the term software
support. Also the term maintenance does not

Chapter 7 Post Deployment Software Support

Swanson’s Gategories

CORRECTIVE MAINTENANCE S

Performed to identity and correct
software failures, performance
failures, and implementation

failures.

Performed to adapt software to
changes in the data requirements

or the processing environments.

PERFECTIVE MAINTENANCE
Performed to ~nhance perform-
ance, improve cost-effoctiveness
improve processing efficiency,

or improve maintainability.

el necessary to continue user service.

ADAPTIVE MAINTENANCE e T

Reutter’s Categories

EMERGENCY REPAIRS
Performed when immediate repair is

-+ CORRECTIVE CODING
Performed to correctly reflect the

specification or to correctly utilize

system resources.

e UPGRADES
Performed to adapt to changes

in processing requirements.

. CHANGES IN CONDITIONS
Performed to adapt to changes
in business conditions due to
regulatory situations or other
situations beyond the control

of the organization.

g GROWTH
Performed to adapt to changesin

data requirements or the addition

of new programs, of new users.

ENHANCEMENTS

Performed in response to users
requeste for changes and additions
to the system.

SUPPORT

Performed to explain system
capabhiiitias, to plan for futuro

support, to measnure performance.

Fig. 7-4 Types of Software Support Efforis

convey a feeling that design work is being
carried out. In any case, the amount of work
required to correct software deficiencies ac-
counts for only about twenty percent of the
totai software support effort [6]. Eighty per-
cent of the PDSS efforts are spent in adding
new capability to the software, or refining
requirements not clearly defined in the
original requirements.

7-6

7.6 SOFTWARE LIFE CYCLE CON-
SIDERATIONS

One of the major reasons for the high cost of
software support is that it costs much more to
correct problems after the initial design has
been completed than it does to correct
problems carly in the devel: yment phase.
Modifications require the same development

activities as the original process because
software support is redevelopment. It is ex-
tremely difficult to understand someone
else’s design, to figure out what they were
trying to accomplish, to correct any latent
problems, or to add new capabilities. This can
become impossible if the documentation is
poor.

Figure 7-5 indicates that while mosterrors are
introduced during the early phases of the
software development cycle, these errors are
not usually found until the software is being
validated or supported. Barry W, Bochm [1]
indicates that the cost of correcting software
errors or adding lines of code to existing
software increases dramatically as the life
cycle progresses. There can be as much as a
hundred to one, or greater, increase in costs.
[n a study performed in 1978 [7], the DOD
found that the average cost of generating a

Chapter 7 Post Deployment Software Support

late in the development cycle, tends to sig-
nificantly increase software life cycle costs.

7.7 IMPROVING THE PDSS PROCESS

There are a number of actions that can be
taken to improve the PDSS process and to
reduce software life cycle costs. One of the
most important is the creation of a document
that spells out all of the activities that must be
accomplished during the life of the software
program. Within the DOD this document is
called the Computer Resources Life Cycle
Management Plan (CRLCMP). The
CRLCMP is developed carly in the acquisi-
tion cycle to ensure that all issues and resour-
ces relevant to the acquisition, testing, and
support are properly accounted for. Both the
Navy, with OPNAVINST 5200.28 [8] and the
Air Force with AFR 800-14 [9] require that
the CRLCMP be initiated by the developing

SOFTWARE DEVELOPMENT DEV$
REQUIREMENTS ANALYSIS 5%
DESIGN 25%
CODE & UNIT TEST 10%
INTEGRATION & TEST 50%
VALIDATION & DOCUMENTATION 10%
OPERATIONS & MAINTENANCE

ERRORS ERRORS RELATIVE
INTRODUCED FOUND COST OF ERRORS
55% 18% 1.0
30% 10% 1-15
10% 50% 1.5-5.0
5% 22% 10 - 100

Fig. 7-§ Software Life Cycle Considerations

line of code is about seventy-five dollars while
the average cost of modifying a line of code
late inthe development cycle or after software
delivery is four-thousand dollars. This high
cost of modifying software, coupled with the
fact that most errors are not uncovered until

7-7

activity during Concept Exploration and up-
dated as the program progresses. The
CRECMP is approved prior to Full Scale
Development. However, it should be clearly
understood that the CRLCMP is a living
document and should be updated whenever

Chapter 7 Post Deployment Software Support

the software is modified. A rule of thumb is to
update the CRLCMP at least annually.

The CRLCMP describes the total software
support strategy. It defines the criteria for
measuring progress and identifies the resour-
ces needed to develop, test, acquire, and sup-
port computer resources (e.g., fazilities,
personnel, hardware, software, training, fund-
ing, tools). The CRLCMP identifies the
regulations and operating instructions that
will be used to manage the system software. It
also identifies all the organizations involved
in the acquisition and support and their roles,
responsibilities and relationships. The In-
tegrated Logistics Support Plan (ILSP) is the
parent document to the CRLCMP and
defines the overall supportability strategy.
Therefore, the CRLCMP should be closely
coordinated with the ILSP.

Managing PDSS is managing change. It is
important to put a rigorous change control
process in place during development that can
effectively transition. The program manager
and/or support manager must understand why
software changes are needed and what resour-
cesare needed to make appropriate economic
and technical tradeoffs. An effective change
control system allows the program manager to
make these decisions.

PDSS managers must understand their role in
the PDSS process and the motivation for a
software change. Is a change required to add
a capability that the user needs, or to correct
a deficiency? If a change is required, are the
personnel necessary to implement the change
available and capable of performing the task?
Has the program office provided the software
support personnel the necessary tools and
resources necessary to make changes suceess-
fully? When a change is to be made, will there
be any disruption to current services? How
long will it take to make these changes? What

will be the impact on software integrity and
what are the ramifications for future changes?

In 1984 the JLCreport on the "Cost of Owner-
ship" [2] concluded that program managers
needed to understand how each PDSS activity
was organized and how it functions within
their own services. To this end, they provided
the following descriptions of PDSS centers:

Army - The Army PDSS center is a center
within a DARCOM subordinate command
established to support the software subsys-
tems of all battlefield automated systems for
which that command has logistics support
responsibility. Each center normally sup-
ports numerous systems,

Navy - The Navy PDSS centers’ functions and
staffing are provided for by the In-Service
Engineering Activity assigned the life cycle
system support responsibility. Note thata sys-
tem may be an aircraft avionics package, a
shipboard navigational system, or a shore-
based Command, Control, Communications
and Intelligence system.

Air Force - The Air Force provides for a PDSS
center as part of Integrated Support Facility
(ISF) which is used to provide all hardware
and software engineering support. This ISF is
located in the engineering division or branch
which supports the system program director
(SPD) inan Air Logisiics Center.

Marine Corps - The Marine Corps has estab-
lished a single PDSS center completely
separate from hardware maintenance
facilities. 'This center provides support for
designated Marine Corps Software programs,

1. Organization Chain:

Within the services, PSS centers are located
either in a logistics chain, a Research and

Development (R&D) chain or a combination
of the two. The Navy has a combination chain
with a single boss. The Air Force PDSS cen-
ter is in the logistics chain, but receives direc-
tion from a logistics boss via the R&D chain.
The Army established 11 PDSS centers lo-
cated at the development commands, but
funded by the readiness organizations within
combined commands. Overall PDSS
management is performed by DARCOM.

Coordination between R&D and logistics is
always difficult. Having a single boss reduces
the difficulty to some degree.

2. Development of Policy and Compliances:

Higher level headquarters establishes policy,
publishes implementing instruction and en-
sures compliance by the PDSS centers within
their individual commands.

3. How Funded:

The Air Force is Operations and Main-
tenance (O&M) funded unless a major
rebuild is required; then the system goes back
to the developer and R&D funds are used.
The Navy primarily uses O&M funds, but may
also send major modifications back into a
R&D cycle. The Marine Corps uses R&D
funds. The Army uses a plethora of funding
including numerous types of O&M, procure-
ment and R&D doliars.

A standard approach to funding and a better
definition of maintenance would help reduce
some of these overly burdensome requisition
and accounting functions.

4. Acquire Software Environment:
In all the services, the PSS centers, in con-

junction with the developer, identify support
requirements. In the Navy and Air Foree the

7-9

Chapter 7 Po3t Deployment Software Support

acquisition manager is responsible for procur-
ing the initial suites of equipments, and the
PDSS center is responsible for updat-
ing/replacing that equipment. In the Army,
no defined responsibility exists to ensure that
the developer acquires the support environ-
ment, including mockups and simulators.

5. How Location Is Determined;

The Air Force locates the PDSS centers
within the system program directorate (Air
Logistics Center) along with sustaining en-
ginecring. ‘The Navy collocates the PDSS
centers with the activity responsible for in-
service engineering support. The Marine
Corps only has one PDSS center whose com-
mand has the logistics responsibility for the
system or has computer resources. If the sys-
tem is a command and control system, the
PDSS center is collocated with the battlefield
functional area school.

6. How System is Learned:

The Army and Air Force PDSS centers be-
come involved at the beginning of the
development eycle. They either participate in
the developmental process or become the
IV&V organization, The Navy may follow the
same procedure, Jdepending on when the
PDSS center is designated. The Marine
Corps PDSS center has previously been in-
volved as part of the development respon-
sibility and has replaced it with more of an
IV&V type role.

The involvement of the PDSS centers
throughout the development eycle is critical
to the successtul performance of PDSS work.

7. Use Of the PDSS Center For IV&V:

There is currently no stated requirement to
perform IV&V in any of the services, and

Chapter 7 Post Deployment Software Support

there is a wide variance of how the services
accomplish IV&V. In those programs where
there is a requirement for IV&V, the PDSS
center is a logical choice and she sld be used
to the maximum extent practical.

8. Software Configuration Control:

All service PDSS centers perform configura-
tion control, but are not always formally
tasked with performing configuration
management.

9. Type of Changes:

There are three types of changes: those
brought about by latent defects; those brought
about by user enhancement requests; and
those necessitated by major product improve-
ments. All the service PDSS centers perform
the first two types of changes. Major product
improvements are usually accomplished by a
contractor, with the PDSS center providing
background information and support.

10. Evaluation Of Complaint:

The Army maintenance directorate sends
logistic support representatives to the user
activity to investigate complaints. Once the
problem is identified and verified, the main-
tenance directorate notifies the PDSS centers
who then attempt to duplicate the problem.
The other service PDSS centers reccive the
trouble report directly froin the user and at-
tempt to duplicate the problem. Responses
back to the complaining user vary from peri-
odic status reports about the complaint to not
providing any follow-up information.

11. Develop Software Engineering Change
Solution:

Once the problem has been identified, the
PDSS centers determine the cause. Solu-

7-10

tions are developed and testing is conducted
to ensure that the original problem has been
solved and that additional problems have not
been created.

12. Integration Testing:

In all the services, integration testing is per-
formed when the PDSS center has completed
system testing. With the exception of the
Navy, testing is always performed on the ac-
tual equipment being integrated. In the Navy,
the size of the integration problem often
prevents the PDSS center from conducting
the integration testing in a totally realistic
environment. The software which has been
modified is run on actual system hardware,
but those systems with which it communicates
(i.e., integrated) may be simulated. The
limitations on integration testing of Navy
shipboard combat systems due to the
availability of actual systems are recognized
and organic integration facilities have been or
are being established. These facilities are
outside the PDSS centers’ responsibility and
control, but are available to the PDSS center
for use.

13. Interoperability Testing:

All the service PDSS centers conduct inter-
operability testing to ensure that changes
made to correct problems will in no way inter-
fere with the capabilities of the system to
communicate with other systems,

14. Documentation Update:

All the service PDSS centers update
documentation for every change made. Two
major problems being experienced are the
inadequacy of many existing standards and
initial delivery of poor documentation.
Standards must be published that meet the
needs of all services and contracts must be

written to require documentation in accord-
ance with these standards. DOD-STD-2167A
is a positive step in the right direction. It
describes a common approach to software
development.

15. Distribution Of Software Corrections To
Users:

For systems where there is limited distribu-
tion, changes are hand-delivered and accom-
panied by sufficient instruction to allow the
user to execute a smooth transition. In those
systems where a large number of changes
must be installed, the users are supplied with
a written instruction package through a dis-
tribution process.

7.8 MANAGEMENT GUIDANCE.

By changing the traditional prejudices toward
software support, by following sound en-
gineering practices, and through the use of
good management tools and plans, program
managers can begin to deal with the software
life cycle support problems. The following
represents a set of guidelines which can be
followed by the program manager and can
lead to more cost effective software support:

(a) The program manager must ensure that
sound software engineering design techni-
ques are used during the development
process where the majority of all errors are
introduced and that the software is designed
for supportability;

(b) The CRLCMP must be developed early in
the life of the program development cycle
(Concept Exploration phase), periodically
updated and adhered to;

(¢) Personnel and productivity are important
issues. It is incumbent upon program
managers to acquire and retaina qualified and

7-11

Chapter 7 Post Deployment Software Support

stable workforce. This may require the pro-
gram manager to develop a continuous train-
ing program for software personnel. In order
to get more out of the personnel, program
managers must provide the supporting ac-
tivity modern tools and facilities;

(d) Documentation and support software
tend to be cut out of programs early in the
development process in order to save money.
This causes severe problems later on in the
program, It is important that all the tools
necessary to provide software support are
delivered to the support facility;

(e) The software baseline must be controlled
throughout its life cycle by using good con-
figuration management techniques;

(f) The program manager should involve the
PDSS organization early in the development.
The personnel at these facilities have a wealth
of knowledge about what is required to sup-
port a program and about the associated
problems. This provides the program
manager with a real time lessons learned;

(g) It is imperative that the program manager
appropriately plan, budgets, and fund the
PDSS effort.

7.8 REFERENCES

1. Boehm, Barry W., Software Engineering
Economics, Englewood Cliffs, NJ: Prentice-
Hall, Inc,, 1981.

2. "Final Report of the Joint Logistics Cont-
manders Workshop on Post Deployment
Software Support for Mission Critical Com-
puter Resources," Volume 11 - Workshop
Proceedings, June 1984.

3. Martin, James and Carma McClure,
Software Maintenance - The Problem and its

Chapter 7 Post Deployment Software Support

Solutions, Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1983.

4. Swanson, E., "The Dimension of Main-
tenance," 2nd International Conference on
Software Engineering, Proceedings, San Fran-
cisco, October 13-15, 1976, pp. 492-497

5. Reutter, John, "Maintenance Is a Manage-
ment Problem and a Programmer’s Oppor-
tunity," AFIPS Conference Proceedings on
1981 National Computer Conference
(Chicago), Vol. 50, May 4-7, 1981, pp.343-
347.

6. Lientz, B,, and E. Swanson, Software Muin-
tenance Management, Reading, MA: Ad-

7-12

dison-Wesley Publishing Co., Inc., 1980, pp.
151-157.

7.De Rosel, B., and T. Nyman, "The Software
Life Cycle - A Management and Technologi

cal Challenge in the Department of Defense,"
IEEE Transactions on Software Engineering,
Vol. SE-4, No. 4, July 1978, pp. 309-318.

8. OPNAVINSTR 5200.28, Life Cycle
Management of Mission Critical Computer
Resources, 25 September 1986.

9. AF Regulation 800-14, Life Cycle Manage-
ment of Computer Resources in System, 29
September 1986.

CHAPTER 8

Chapter 8 Planning for Computar Software

PLANNING FOR COMPUTER SOFTWARE

8.1 INTRODUCTION

This chapter will discuss the software plan-
ning activities that must be conducted during
tne various phases of software acquisition.
The success of any project is greatly deter-
mined by how much care and time are put into
the planning process. Software development
and acquisition are no different!

Planning for computer software begins during
the Concept Exploration (CE) Phase and in-
tensifies during the Demonstration and
Validation (D/V) Phase. By the time the pro-
gram enters the Full Scale Development
(FSD) Phase, most of the necessary software
planning documents should have been
generated.

8.2 PLANS AND DOCUMENTATION

The major plans and documents generated by
the program office are the Program Manage-
ment Plan (PMP), the Test and Evaluation
Master Plan (TEMP), the Integrated Logis-

8-1

tics Support Plan (ILSP), the Computer
Resources Lifecycle Management Plan
(CRLCMP),and the System/Segment
Specification (SSS).

8.2.1 Program Management Plan (PMP)

The purpose of the PMP is to guide all pro-
gram office personnel toward a common goal.
The PMP provides essential information on
the overall program strategy and goals. It can
be viewed as the game plan for the program
office and includes a schedule of the major
events leading to the initial operating
capability (10C).

The PMP should be updated and kept current,
particularly with respect to the schedules. It
should be mandatory reading for every new-
comer into the organization. This is especially
true in software development since software
is usually on the critical path. A detailed out-
line of the PMP is given in Appendix C.

Chapter 8 Planning for Computer Software

8.2.2 Test and Evaluation Master Plan
(TEMP)

The TEMP is the basic planning document for
all test and evaluation (T&E) related to a
particular system acquisition. Itis used by the
Office of the Secretary of Defense (OSD) and
all DOD components in planning, reviewing,
and approving T& E. The TEMP provides the
basis for all other detailed T&E planning
documents.

The TEMP must address the effects of human
performance on the weapon system’s opera-
tional effectiveness and the ability of the sys-
tem to meet performance standards,
including reliability and maintainability.

the TEMP must address the system’s critical
technical performance thresholds and their
relationship to the system’s required opera-
tional characteristics. It must clearly outline
the planned T&E process through which the
test objectives will be met. It must also
describe the physical hardware tests and any
analysis required to provide data not gained
from actual testing.

The TEMP must clearly describe the required
T&E activities along with all the necessary
resources for fully testing the operational
suitability of the weapon system.

The TEMP is intended to be a living docu-
ment that addresses the changing critical is-
sues affecting any acquisition program.
Major changes in program requirements,
schedule, or funding usually result in a change
to the test program. To ensure that T&.
requirements are current, the TEMP shall be
updated on an annual basis until all significant
testing is complete. The update shall reflect
changes to the T&E program due to: test
results, changes in the scope or schedule of
the T&E program, changes in the required

8-2

characteristics, changes in the reassessment
of test resource provisions and limitations, or
any changes deemed necessary by the OSD.
A detailed outline of the TEMP is found in
Appendix D.

8.2.3 Integrated Logistics Support Plan
(ILSP)

The ILSP describes and documents the in-
tegrated logistics support program. It is the
principal logistics document for an acquisi-
tion program and serves as asource d - ;ument
for summary and consolidated information
required in other program management
documents. It is summarized in the System
Concept Paper (SCP) and the Decision Coor-
dina‘ion Paper (DCP).

The purpose of the ILSP is to:

(a) Provide a complete plan for support of the
fielded system;

(b) Provide details of the ILS program and its
relationship with overall program manage-
ment;

(¢) Provide decision making bodies with the
necessary information on ILS aspects for
making sound decisions on further develop-
ment and production of the basic system;

(d) Provide the basis for the preparation of
the ILS sections of the procurement package,
e.g., statement of work (SOW), specification,
and source selection and evaluation criteria;

(e) Describe how readiness and sustainability
will be achieved.

The ILSP is initially a section of the Program
Management Plan (PMP) but, early in the
Demonstration and Validation Phase, it is
removed from the PMP and becomes a stand-

alone document. At a minimum, the ILSP is
updated annually. A detailed outline of the
ILSP is found in Appendix E.

8.2.4 Computer Resources Life Cycle
Management Plan (CRLCMP)

The CRLCMP is the primary planning docu-
ment for coraputer resources throughout the
system life cycle. It complements the In-
tegrated Logistics Support Plan. The purpose
of the CRLCMP is to:

(a) Document the software support concept
and the resources needed to achieve the sup-
port posture;

(b) Document the computer resources
development strategy;

(c) Identify the applicable directives (regula-
tions, operating instructions, technical orders,
etc.) for managing computer resources in the
system;

(d) Define any changes or new directives
needed for the operation or support of com-
puter resources;

(e) Define the scope of independent verifica-
tion and validation (IV& V) efforts.

Development of the CRLCMP s initiated
during the Concept Exploration phase. The
CRLCMP is coordinated with the user and

supporting organizations before release ¢

the Full Scale Development solicitation.

During the Production and Deployment
phases, the CRLCMP is updated, as required,
to reflect significant changes in the system or
its support environment. When updating the
CRLCMP, sections that refer to ac-
complished events should be reworded as his-
torical notes or deleted. After the system is

Chapter 8 Planning for Computer Software

transitioned to the user the software support
activity will assume responsibility for the
CRLCMP. A detailed outline of the
CRLCMP is found in Appendix F.

8.3 ENGINEERING STUDIES

Systems engineering studies are based on the
concept of a hierarchy of requirements start-
ing with system level requirements and en-
ding with detailed engineering specifications
and data. System definition proceeds by
refining each level of requirement into subor-
dinate requirements until the entire system is
described. Computer resources are con-
sidered as an integral part of the system and
are subject to tradeoff and optimization
studies. Systems engineering studies will nor-
mally include:

Requirements Definition - Requirements
definition begins with the creation of the sys-
tem level requirements specification. This
definition may be spelled out in either the
System/Segment Specification (SSS), the
Prime Item Development Specification
(PIDS), or the Critical Item Development
Specification (CIDS). The developer then
performs the necessary analysis to determine
the preliminary allocation of the require-
ments between hardware and software. In ad-
dition, the developer begins work on the
preliminary Software Requirements
Specification (SRS) and the preliminary In-
terface Requirements Specification (IRS).
The formal allocation of what is to be ac-
complished in hardware and what is to be
accomplished in software 1s documented in
the Systems/Segment Design Document
(SSDD). These documents are necessary for
the effective accomplishment of the software
design. The System Specification and the
SSDD are approved at the Systems Design
Review (SDR) and a Functional Baseline es-
tablished.

Chapter 8 Planning for Computer Resources

Interface Definition - The Computer
Resources Working Group (CRWG) and the
Interface Control Working Group address
system and subsystem interface requirements
that may affect computer resources. The re-
quirements for these interfaces are docu-
mented in system specifications (i.e., SSS,
PIDS, CIDS).They are furthered detailed in
the IRS. The IRS and the SRS are later ap-
proved at the Software Specification Review
and together these two documents formally
define the Allocated Baseline.

Tradeoff and Optimization - Tradeoff and
optimization studies should consider:

(a) Tradeoffs between computer software and
computer hardware;

(b) Required computer processor architec-
tural features such as memory size, speed,
input and output capacity, and spare capacity;

(c) Use of standard equipment, HOLSs, in-
struction set architectures, and interfaces;

(d) Alternate approaches for meeting system
security requirements;

(e) Improved supportability versus improved
performance,

(f) Use of existing government resources or
commercial off-the-shelf resources versus
new development.

Feasibility Studies - These studies determine
the feasibility of alternative allocations of sys-
tem requirements to computer resources and
the derivation of data for formulating budgets
and schedules.

Risk Analysis - Identify the major software
development risks using Table 8-1 and incor-

porate into the system risk management plan
or the CRLLCMP.

Software Support Studies - Software support
studies are conducted to refine the system
support concept, to allocate software support
requirements, and to identify operational sys-
tem software.

8.4 THE COMPUTER RESOURCES
WORKING GROUP (CRWG)

A CRWG should be established as early as
possible during the CE Phase but nolater than
Milestone I. For modification programs, and
those acquisitions closely related to ongoing
programs, an existing CRWG may be used.
The CRWG@G’s role is to participate, in an ad-
visory capacity, in all computer resources
aspects of the program. This includes pro-
gram management reviews, source selection
evaluation boards, design reviews, and audits.

The CRWG is formally chartered by the pro-
gram manager and should ccordinate its ac-
tivities with the operational user, the
supporting organization, the interface control
working group, and any other organization
with an active interest in the program. Ata
minimum the CRWG will:

(a) Advise the program manager in all areas
relating to the acquisition and support of com-
puter resources,

(b) Generate the initial CRLCMP and update
it as the program progresses;

(c) Select a software support concept and
document it in the CRLCMP;

(d) Monitor compliance of the program with
computer resources policy, plans, procedures,
and standards;

Chapter 8 Planning for Computer Software

CAUSE

ACTION

Lack of adequate definition of computer resource functional,
interface, support, or performance requirements prior to
structuring the program.

Poorly defined, complex, or untestable intra- or inter-system
interfaces, including human interfaces.

Lack of stability in computer resource requirements during
development.

System engineering techniques such as funtional analyses,
simulation, mathematical modeling, correctness proofs, and
tradeoff analyses.

Incremental development strategies which tackle large, comn-
plex, and pooriy understood raquirements in smaller, more
manageable parts.

Lack of government visibility into the contractor's software
development effort.

Rigorous application of traditional cost, schedule, and per-
formance tracking techniques with careful attention to
earned value progress against measureable milestones.
Since these techniques are almost always driven by the
W8S, visibility of critical and high risk computer resources
is a primary criterion for determining the appropriate level
within the WBS for these components of the system.

Use of a risk tracking system to collect data on the status
of identified high risk items. The output of this system
should be a standard part of periodic reviews.

Use of independent verification and validation.

Performance requirements that push the state of the art.

Prototyping or duplicate development of key algorithms,
concepts, and components.

Inaccurate, poorly defined, or nonexistent cost and schedule
estimates for computer resource development.

Muiti-source cost and scheduie estimates using a variety of
estimating techniques and models. Avoid basing all esti-
mates on "lines of code" estimates derived from a single
source.

Inadequate deveioper and acquisition manager capability or
capacity for software development.

Inadequate, immature, or poorly integrated software develop-
ment tools (e.g., compilers, linkers, loaders} & programming
support environment.

Reviews of offerors sites to assess capability and capacity
of development personnel, management structure and
procedures, and facilities.

Lack of ad-quate spare computer hardware capacity (e.g.,
processor speed, memory, input/output, and secondary
storage.

Undefined or poorly defined software support concepts.

Early planning for spare capacity during development and
support phases of the lifecycle; periodic reviews of capa-
city allocation, and projection of requirements trends.

Rigorous adherence to the separtion of mission software
and system softwaie into separate CSCls.

Table 8-1. Common Risks and Possible Corrective

(e) Insure that software testing is adequately
addressed in the TEMP and monitor com-
pliance as the program matures;

(f) Identify and prioritize the required
software quality factors such as inter-
operability, portability, flexibility, useability,
reusability, maintainability, integrity,
reliability, correctness, testability, and ef-
ficiency.

(g) Define the scope of the IV&V effort and
develop a recommended approach using con-
tractor or government personnel;

(i) Evaluate the use of standard equipment,
HOLs, and instruction set architectures;

(j) Evaluate the need for development of
software tools and recommend a develop-
ment approach

Chapter 8 Planning for Computer Software

8.5 SYSTEM SECURITY

The Program Manager should review security
directives and identify mission security needs
early in the development cycle. Experience
has shown that it is much cheaper to design
security into the system from the outset than
to add it on to a mature system. It is more
cost-effective to include security in the initial
design. A security requirements’ analysis
should be conducted even if funding is very
limited and trusted security features are not
incorporated into the system design.

The ability to evaluate the security of a system
improves the user’s confidence that the
security mechanisms are sufficient and
functioning. If security features are examined
in the design phase, assessment criteria can be
established in advance, and security features
tested and evaluated throughout the develop-
ment life cycly rather than at system deploy-
ment. This also makes it easier to satisfy the
system certification and accreditation re-
quirements. System certifica ion ensures that
technical computer security features have
been tested and are shown to be adequate.
System accreditation ensures that the system
safeguards meet DOD operation security re-
quirements..

Unfortunately, MIL-STD-2167A is silent on
security and there are no security Data Item
Descriptions referenced in that standard.
DOD-STD-5200.28, DOD Trusted Computer
System Evaluation Criteria, however, provides
evaluation methods and criteria for system
« curity. This book, generally called the
orange book" and published by the National
Computer Security Center (NCSC), is sup-
ported by several related security guides. This
group of documents is informally known as
the "Rainbow Series". Security provisions
must also be incorporated into planning docu-
ments, such as the PMP, TEMP, ILSP, and the

8-0

CRLCMP, and examined during the various
engineering studies.

It is beyond the scope of this guide to provide
complete information on system security;
however, the PM is ultimately responsible for
the security of system. Itisimperative thatthe
PM appoint a security manager early in the
acquisition cycle.

8.6 CONTRACTUAL CONSIDERATIONS

Arecurring activity conducted by the program
office is that of selecting one or more contrac-
tors and putting them on contract. Although
the intensity of the activity and the number of
contractors to be evaluated may differ, the
process of selecting a contractor(s) is the same
regardless of the phase of development. The
three major activities performed are: generat-
ing a source selection plan, generating a re-
quest for proposal package, and conducting
the source selection process.

8.6.1 Source Selection Plan (SSP)

An outline of a typical SSP is given in Appen-
dix G. The SSP is a key document for initiat-
ing and conducting a source selection. As
shown in Appendix G, the SSP should address
mission critical computer resources. It is
prepared by the program office and must
reflect applicable program management
direction or guidance. For the Air Force, this
guidance is reflected in the Program Manage-
ment Directive (PMD). The SSP is a plan for
organizing and conducting the evaluation and
analysis of proposals and a roadmap for the
selection of a source or sources.

The SSP must be submitted sufficiently in
advance of the planned acquisition action to
facilitate review and approval by the Source
Selection Authority (SSA) and early estab-
lishment of the Source Selection Advisory

Council (SSAC) and the Source Selection
Evaluation Board (SSEB).

8.6.2 Request for Proposal Package (RFP)

The RFP package must be sufficiently
detailed to allow responding offerors to ade-
quately address system requirements and to
provide other information necessary for
evaluation and award. The RFP package typi-
cally consists of a requirements specifica-
tion(s), instructions to offerors, proposal
evaluation criteria, a statement of work, a
work breakdown structure, requirements for
deliverable items, and special contract re-
quirements. Supporting information that ex-
pands on the system operations and support
concepts, including the CRLCMP, may be
attached to the RFP package.

Even though the RFP is prepared by the pro-
gram office, it is good practice to solicit inputs
from the using and supporting organizations.
They usually provide valuable insight into the
operational and support environment.

8.6.2.1 Requirements Specification(s)

The requirements specification(s) included in
the RFP is dependent on the phase of the
system development being undertaken. If
one is contracting for the CE phase, then the
specification would be an overall system
specification. For the D/V phase, the
specification would be the System/Segment
Specification. For the FSD phase, the
specifications would be the refined Sys-
tem/Segment Specification and could include
the Software Requirements Specification and
the Interface Requirements Specification.
Appendix H lists the various Data Item
Descriptions (DIDs) called out by DOD-
STD-2167A which govern the format and
content of the required specifications.

8-7

Chapter 8 Planning for Computer Software

8.6.2.2 Instructions to Offerors

In addition to specifying proposal form and
content, the instructions to offerors must re-
quire submission of such documents as a
Software Development Plan, a Configuration
Management Plan, and a Software Quality
Program Plan as part of the proposal. These
plans should include the offerors’ software
development organization, their develop-
ment methodology, their management
philosophy, and their procedures for control-
ling and assessing development progress. Ap-
pendix H lists the various DIDs which
describe the format and content of these
documents.

The instructions to offerors are the
mechanism for ensuring that offerors address
critical software issues such as:

(a) The methodology used to perform
software sizing and cost estimating and the
approach to be followed during software
development;

(b) The rationale used for the computer
resources timing and sizing estimates;

(¢) A description of any teaming and sub-
contractor arrangements;

(d) The skill levels required for computer
resources development and their availability
within the corporate structure;

(e) The method to be used for risk control;
() Any planned use of firmware;

{#) Reusing or modifying existing software;

(h) A clear definition of all assumptions used
during proposal preparation;

Chapter 8 Planning for Computer Software

(i) Plans for the development of prototype
software;

(j) Plans and procedures for generating and
using software metrics.

(k) The computer language that is to be used
(I) The level of system security required.
8.6.2.3 Proposal Evaluation Criteria

The evaluation criteria must be based on the
requirements within the RFP. This includes
computer resource development and
management activities and the offerors’
software management plans described in the
Software Development Plan and other ap-
plicable documents. The criteria in the RFP
should be listed in relative order of impor-
tance. The evaluation criteria must include
the availability of software, documentation,
and the rights necessary to meet life cycle
needs and the compatibility of the proposed
design with the support concept defined in the
CRLCMP. This will ensure that the design is
modifiable and that proposed support resour-
ces and methods are adequate. When the
processing of sensitive or classified informa-
tion is involved, the program office must en-
sure that computer security is also included in
the evaluation criteria.

8.6.2.4 Statement of Work (SOW)

The SOW will identify the applicable program
management, development, test, training, in-
stallation and support tasks to be performed.
More specifically, the SOW will:

(a) Identify clear and concise statements of
specific task;

(b) Address the planned use of an Inde-
pendent Verification and Validation contrac-

8-8

tor and the type and amount of support ex-
pected from the development contractor;

(¢) Tailor all contr. Jy required standards
and specifications to the program needs;

(d) Address the planned use of government
provided operational and environmental
simulators, support equipment, or other
software programs (e.g., compilers);

(e) Require comprehensive layout of pro-
gram schedules to include reviews, technical
interchange meetings, audits, and testing;

(f) Address the requirements for prototype
software development;

(g) Address the requirements for generating
and using software metrics data.

(h) Address the appropriate trusted system
accreditation and certification requirements,

8.6.2.5 Work Breakdown Structure

A preliminary work breakdown structure
(WBS) may be included in the RFP package.
The contractor will be expected to develop
their own WBS containing additional levels of
detail.

8.6.2.6 Deliverable Items

Deliverable computer hardware and
software, including support and test software,
will be specified as contract line items
(CLINs) in the schedule of the contract. The
CLINs should specifically call out deliveries
of such items as operational flight programs
(OFPs), test program sets (TPSs), simulation
software, and incremental deliveries of
various versions of all of these. Documenta-
tion requirements will be identified in the
Contract Data Requirements List (CDRL),

and software media delivery requirements
will be specified in the Software Require-
ments Specification which will be listed in the
CDRL. For software, deliverable items will
include complete source code in a form
suitable for compilation or assembly and the
complete object code in a form suitable for
loading and executing in either operational or
support computers. The CDRL may include
the documentation needed for developing,
testing, operating, and supporting the system
and for training personnel. Appendix H lists
the various DIDs for this additional documen-
tation. If all the documentation needs cannot
be identified before contract award, the
CDRL may include a report that will identify
data items needed to satisfy the system sup-
port and operational concepts. A Data Ac-
cession List should be used to identify the
contractor’s informal documentation to be
made available for government review,

8.6.2.7 Special Contract Requirements

Special requirements are tailored contractual
clauses incorporated into the contract to in-
sure the government’s right to computer
software and to provide adequate protection
whenever commercial off-the-shelf software
is used.

Restricted Rights Software - The RFP should
require the offeror to identify and cost all
restricted rights computer software or equip-
ment, associated documentation, and support
items required to be delivered, or subject to
order, under the contract.

Commercial Off-the-shelf Software (COTS) -
Procedures may be developed and incor-
porated into the contract to ensure tha the
contractor reviews all subcontractor or ven-
dor products and that all commercial
hardware and software in the system are sup-
ported to the correct configuration level. The

8-9

Chapter 8 Planning for Computer Software

contractor should be made responsible for
maintaining engineering compatibility be-
tween all system hardware and software, in-
cluding the incorporation of newly released
versions of software. Operating system
software falls into this category.

8.6.3 Source Selection Process

The principal objective of the source selection
process is to select the source (offeror) whose
proposal has the highest degree of credibility
and whose performance can be expected to
best meet the government’s requirements at
an affordable cost. The process should pro-
vide an impartial, equitable, and comprehen-
sive evaluation of the competitors’ proposals
and related capabilities. The process should
be accomplished with minimum complexity
and maximum efficiency and effectiveness. It
should be structured to properly balance tech-
nical, financial, and economic considerations
consistent with the phase of the acquisition,
programrequirements, and business and legal
constraints. A typical source selection process
is depicted in Figure 8-1.

8.6.3.1 Draft RFP

Ifit is at all possible, the process should begin
with a draft RFP which consists of preliminary
versions of a statement of work, a specifica-
tion, schedules, a contract data requirements
list (CDRL), and evaluation criteria. Unfor-
tunately, time and resources do not always
permit a program office to generate and cir-
culate a draft RFP.

By circulating a draft RFP among the various
internal government organizations (i.e., con-
tracts, legal) the RFP can be evaluated for
consistency and content. These organizations
can provide valuable comments which help to
ensure that the final RFP doesn’t become
bogged down because of myjor shortcomings.

Chapter 8 Planning for Computer Software

OFFERORS ron
—p PREPARE OFFCRORS
> INTERNAL _ PROPOSALS
l INDEPENDENT % *
REVIEW :
FINAL
EVALUATE
ORAFT RFP - FACT FINDING
RFP PROPOSALS
RELEASED
S/W DEVELOPMENT
I INDUSTRY
S evew | - CAPABILITY/CAPACITY
REVIEW
RATE
INTERNAL
PROPOSALS
CONTRAGT SOURCE INDEPENDENT
>) REVIEW ———— PER
AWARD SELECTION o EVALUATION
AUTHORITY CRITERIA
RATING

Fig. 8-1 Source Selection Process

An industry review can also be very helpful.
Industry may provide constructive informa-
tion on the potential technical, schedule, and
cost risks associated with the intended
procurement. For example, they may provide
alternative approaches to high risk areas and
indicate areas which are ambiguous, con-
tradictory, or likely to be major cost drivers.

All industry comments, however, should be
caretully examined to separate fact from
marketing information. Some companies
may not be able to resist the temptation to
suggest changes or additions to the RFP which
could enhance their competitive posture. In
spite of this danger, industry comments can be
tremendously useful.

A final RFP can be prepared and released
once comments have been received from in-
dustry and other internal organizations.
While the bidders are preparing their
proposals, the program office will be finaliz-

ing the source selection organization and the
proposal evaluation criteria. Although the
general evaluation criteria have already been
released with the RFP, specific sub-criteria
and factors may still require fine tuning

8.6.3.2 Populating the Source Seiection Or-
ganization

One of the constant problems faced by pro-
gram managers is finding qualified software
individuals willing and able to be away from
their jobs for an extended period of time.
Source selections can take anywhere from
three to six months to complete. Since quality
software individuals are already in short supp-
ly, a program manager may have to resort to
innovative means for acquiring them. If one
or two experienced software people are al-
ready on the staff, then the problc.a becomes
more manageable. The task of finding addi-
tional knowledgeable but less experienced
software people is a bit easier.

8-10

Chapter 8 Planning for Computer Software

DETAILED
PROPOSAL EVAL
SSEB FORMAL
PROPOSAL
EVAL
e SSAC
PROPOSALS

| r____ﬁﬁh
SSA

EVAL
ANALYSIS
& FINDINGS

—P SELECTION

DECISION

Fig. 8-2 Evaluation Process

The problem is more difficult if a program
manager does not have in-house expertise.
The first place to look for experienced
software personnel is in another program of-
fice that may be willing to release in-
dividual(s) for the duration of the source
selection. Another source could be the
various laboratories within the command or
service. A sister service may be able to pro-
vide temporary software expertise. There are
also federally established, not-for-profit or-
ganizations such ar . Aerospace Corp., the
Mitre Corp., and the Software Engineering
Institute whose employees routinely par-
ticipate in government source selections.
Other corporations exist which may be able to
participate in a source selection. These cor-
porations are primarily analyses oriented and
normally do not produce or develop hardware
for the commercial market. The Rand Corp
and the Charles Draper Laboratory fall into
this category. The lead software individual,
however, must be a government employee.

8-11

8.6.3.3 Evaluation Process

The evaluation process itself is well defined
and regulated by the DOD and service
peculiar regulations and procedures. Figure
8-2 depicts the typical evaluation process
which begins with the receipt of cost, technical
and management proposal volumes, as a min-
imum. The Source Selection Evaluation
Board (SSEB) is comprised of the functional
area experts who actually perform the
detailed evaluation. Since this is a time-con-
suming but critical step, it is important that
the lead individual expedite the process.
Endless discussions over trivial or irrelevant
points cannot be tolerated. Even when
serious topics are the source of major dis-
agreements among the evaluators, the lead
software individual must force the people in-
volved to come to a reasonable and timely
consensus. Minority opinions and views
should be aired and, at the discretion of the
lead software person, documented and

Chapter 8 Planning for Computer Software

presented to the Source Selection Advisory
Council (SSAC) for resolution. By the same
token, an individual’s infatuation with a par-
ticular technology should not be allowed to
unduly bias the proposal ratings. For ex-
ample, an individual’s infatuation with object-
oriented design, shonld net interfere with his
appraisal of a more conventional approach
(e.g., functional decomposition).

Once the SSEB completes its evaluation, the
results are presented to the SSAC. The
SSAC, which is composed of senior govern-
ment personnel, then evaluates the analysis
and findings of the SSEB and presents the
results to the Source Selection Authority
(SSA). The SSA is the official designated to
direct the source sclection and to make the
final source selection decision.

8.6.3.4 Evaluating Offeror’s Proposal

Since every program has unique require-
ments, it is beyond the scope of this guidebook
to provide specific information on what is
important in a software source selection. In
general, however, the software evaluation as-
sesses the technical adequacy of the proposed
computer system architecture to satisfy the
weapon system requirements, Items that are
evaluated include:

(a) The throughput and memory capability of
the proposed computers;

(b) Future vendor support for commercially
supplied items such as tape drives, disk drives,
controllers, etc.;

(c) Computer resources interfaces to the rest
of the system architecture and human
operators;

(d) Adequacy of the operating system or
software executive;

R-12

(e) Availability, currency, and usage of
software development tools and methods;

(f) Organic supportability of computer
hardware and software;

(g) The offeror’s Software Development Plan
and software development standards and pro-
cedures;

(h) The offeror’s software development
capability and capacity.

It is important to emphasize the need to per-
form an integrated, comprehensive evalua-
tion of the offerors’ total proposal. This
usually means that technical evaluators must
also review the management and cost
proposals. The cost evaluators normally con-
centrate on accounting and costing consisten-
cy and completeness. They are not qualified
to pass judgment on whether a proposed num-
ber of man-hours are sufficient for a par-
ticular analysis or effort. Only the technical
evaluators can make this assessment.
Likewise the technical evaluators can also as-
sess whether a particular management or-
ganization or procedure is consistent with the
technical effort proposed. Cne is not advocat-
ing that all technical evaluators review cost
and management data. What is being
proposed is that one or two key individuals
from the technical panel make a top-level
review of cost and management data for
realism and consistency.

8.6.3.5 Software Development Capability
Capacity Review

Figure 8-1 shows a software development
capability and capacity review (SDCCR) oc-
curring as part of the source selection process.
The SDCCR has been successfully used at the
Aeronautical Systems Division of the Air
Force Systems Command at Wright-Patter-

son AFB. It is described in ASD Pamphlet
800-5, Software Development Capability and
Capacity Review [1].

Purpose - The SDCCR is intended to review
and assess an offeror’s specific capability and
capacity to develop the software required on
a particular weapon system program as
defined in the RFP. This review process is
designed to be incorporated as an integral
part of the FSD source selection process. The
review process accomplishes three related
objectives. First, the acquisition manage-
ment team gains an understanding of the
offeror’s software development methods and
tools. Second, the capability and capacity of
the offeror to develop the required software
inadisciplined software development process
is determined. Third, the review process
elicits a ccntractual commitment by the of-
feror to implement the methods, tools, prac-
tices and procedures which form the
discipline and structure for this software
development process [1].

Process Summary - The SDCCR process is
accomplished during the FSD RFP prepara-
tion and source selection phase. The RFP
includes the requirement that the offeror
team provides specific information describing
their software development methods, and in-
clude examples of how the methods have been
applied on past or on-going programs. The
SDCCR source selection team reviews this
information and then conducts an in-plant
review with the offeror’s team. This review is
based on a specific set of SDCCR questions
which are provided with the RFP to the of-
ferors and are found in Attachment 4 of ASD
Pamphlet 800-S. Following this one to two
day in-plant review, the offeror’s capability
and capacity to develop the required software
is assessed using the predefined RFP stand-
ards. This evaluation becomes an integral part
of the program source selection and forms

8-13

Chapter 8 Planning for Computer Software

part of the basis for the award. It is highly
recommended that offerors conduct this
review with their subcontractors prior to the
government’s in-plant review [1].

Review Areas and Factors - The SDCCR is
usually organized into five major areas:
management approach, management tools,
development process, personnel resources,
and Ada technology. These areas are in turn
organized into factors as shown in Table §-2.
Other factors may be added to this review as
a function of unique program requirements.

Team Composition - The SDCCR is per-
formed by the source selection team. This
approach is fundamental to achieving the
multiple objectives of the SDCCR. The usual
team composition is as follows:

(a) Team Chief - Computer resources systems
engineer or senior software engineer from the
engineering staff;

(b) Program Manager/Project Manager;

(c) Software Manager;

(d) Software Engineer;

(e) Contracting Officer;

For smaller programs, it is possible for one
individual to perform the program/project
and software management role, and one in-
dividual to perform the chief/lead and
software engineering role. In addition, it is
desirable 1o include the following participa-
tion on the team:

(a) Product and Quality Assurance;

(b) Configuration Data Management;

(c) Logistics;

Chapter 8 Planning for Computer Software

(d) Cost Analyst;

(e) Defense Contract Management Com-
mand (DCMC) personnel.

It is recognized that too large a team is
counterproductive. The key is to perform the
review with a small, knowledgeable group of
software experienced acquisition personnel.

8.6.3.6 Software Capability Evaluation

Another method of assessing the contractor’s
software engineering capability is the
Software Capability Evaluation (SCE). The
method has been used in competitive bids for
programs at the Naval Air Development Cen-
ter, the Air Force Electronic Systems

MANAGEMENT APPROACH
- Management Organization

- Software Management System

- Software Configuration Management

- Software System Organizationa and Structure
- Softwae Subcontracting

- Software Planning

- Software Quality/Product Assurance

- Contract Control Methods

MANAGEMENT TOOLS
- Internal Management Standards and Tools
- Software Size, Manpower, Schedule, and Cost
Estimating
- Contract Work Breakdown Structure (CWBS)
- Software Work Definition
- Schedule Definition and Statusing
- Software Cost Performance Reporting System

DEVELOPMENT PROCESS
- Internal Development Standards and Procedures
- Software Engineering
- Software Development Tools and Facilities
- Software Test and Verification
- Software Documentation Approach
- Internal Independent Verification and Validation

PERSONNEL RESOURCES
- Estimating Software Personnel Requirements
- Manpower Needs and Qualifications
- Managing Software Personnel Resources
- Company Workload Profile
Ada TECHNOLOGY
- Management Process
- Development Process and Environment (Tool Set)
- Design Process and Methodology
- Personnel Skills and Qualifications
- Capability Demonstration and Risk Management

Table 8-2 SDCCR Factors

8-14

Division, and the Army Communications and
Electronics Command [2].

Purpose - The SCE is the Software Engineer-
ing Institute’s (SEI’s) method for assessing a
contractor’s software engineering capability
[2]. It is used during the source selection and
contract monitoring phases ot software-inten-
sive or software-critical system acquisitions.

The SCE augments the acquisition process by
determining a contractor’s strengths and
weaknesses with respect to a maturity model.
Inaddition, it establishes "software capability"
as a criterion for source selection by providing
an orderly way of comparing offerors’
software capability against a standard set of
criteria. This is an important advantage. This
method should be used to augment current
source selection and contract monitoring
software risk assessment steps.

The SEI, with help from the MITRE Corpora-
tion, developed this method for the U. S. Air
Force. It was motivated by the increasing
importance of software in DOD acquisitions
and the need for e services to evaluate more
effectively software contractors’ abilities to
perform software engineering.

The SEl is striving toward two major goals in
this effort:

(a) providing a standardized software process
evaluation method which is documented,
available for review and comment, and peri-
odically modified as experience is gained with
its use;

(b) making that evaluation a public process
which is defined in advance and for which
contractors can prepare.

By enabling a consistent measurement of
contractors’ software development capability,

the SCE method should improve contractor
and acquisition management.

Process Summary - The Program Manager
and the Procuring Contracting Officer in-
clude SCE wording in the Source Selection
Plan and the RFP. They also ensure that
proper training in SCE is provided to acquisi-
tion personnel and the Capability Evaluation
Team (CET). In their proposals the offerors
will respond to an SCE questionnaire and
provide a list of candidate projects, in the
TN

Program
Manager

\
Procun
Contractmg
Officer

.._ma_LSource Selection Plan

SCE Method & Questions

Request tor Proposal

Cost &
Y Technical
/ Proposal B
e Source _______ N
Selection / Ofterors
Eval \\
y .
\anrd/, - ~—
" Project
Profiles
~ SCE
Questionnaire "—“"M‘r
e | A
Capability ",
Evaluation |
Team

e

Fig. 8-3 SCE in the RFP

form of "project profiles", for evaluation
during the CET’s In-Plant Review (Figure
8-3) [3].

After the CET reviews the responses to the
questionnaire and the listing of candidate
projects, four projects are selected for the
In-Plant Review. An agenda and any requests
for further documentation are sent to the of-
feror before the CET visit (Figure 8-4). After

Chapter 8 Planning for Computer Software

N
/ Capablllty
Evaluatlon Ofterors
Team Agen
\\%' Prolect list for i/
| In-Plant Review
N\ | Bocumentaiion
Requests /
Initial SCE
Response _
T L N Requested
In-Plant Documen-
Review __ tation
Meeting
A

SCE
TN Findings

7 SSEB
o)
SSAC /

AN
e

>

Fig. 8-4 SCE in the In-Plant Review
the In-Plant Review the CET will submit a
report of their findings for the SSAC. The
report addresses key software areas such as
project management, software quality as-
surance, and configuration management (Fig-
ure 8-5).

—— - -

g Hity ™ i Sourcé :

E(E:::j:tli'g:} Selection i
Tea Evaluation ;
" \\ Board
{‘SCE_ ” Technlcal
"I Findings | 1
[Findings | and Cost |

S i Findings ;

, Source rd ‘ -
Selection 3 / Source \
Advisor)“—‘ -l Selection /\

|/ \ Authority

». Council - }

% Management, Technical
i and Cost Evaluation;
Il SCE Risk Assessment

Fig. 8-5 Indicating Program Risk

Chapter 8 Planning for Computer Software

8.7 REFERENCES

1. ASD Pamphlet 800-5, Software Develop-
ment Capability and Capacity Review, HQ
Aeronautical Systems Division, Wright-Pat-
terson AFB, Ohio 45433, 10 Sep 1987.

2. Humphrey , W. S. | et al., A Method for
Assessing the Software Engineering Capability
of Contractors, Technical Report SMU/SEI-

8-16

87-TR-23 Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA,
Preliminary Version, Sep, 1987.

3. Johnson, Albert, Software Capability
Evaluation Implementation Handbook:
Source Selection, Draft V0.21, Software En-
gineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, February 9, 1990.

Chapter 9 Management Principles

CHAPTER 9

MANAGEMENT PRINCIPLES

9.1 INTRODUCTICN

Managing software development is one of the blems are beyond the control of the PM. For
biggest challenges facing today’s government example, there is very little a PM can do about
program manager (PM). The classic changing or growing requirements because of

problems contributing to this challenge are an evolving threat, or fuzzy requirements be-

illustrated in Figure 9-1. Some of these pro- cause of lack of details on the threat. Long

yr
577 % —
e REQMTS T
i CHANGING
| R:’)
/ 7 / GROWTH
%,

COMPLEX(TY RESULTS
UNKNCWN -
QUALITY \ LATE DELIVERY
POOR
HARDWARE /—’ﬁ COST OVERRUNS
poC ION
CONSTRAINTS Q UMENTAT

/
7 POOR PERFORMANCE
o e &wmowsms
_ LACK OF POOR POOR MAINTENANCE
. DISCIPLINE v:s«su.xw
G COMMUNICATION

%% 7 Q\—’/ _‘QH__////
PLANNING % .
7

//—.

Fig. 9-1 Classic Software Development Problems

9-1

Chapter 9 Mziagement Principles

lead times often force systems development
to be initiated before the threat has been
completely evaluated. Shooting at a moving
target of changing or evolving requirements is
a reality of all new systems acquisitions.

There are, however, many problems which
can be minimized or eliminated by the PM.
For example, there are certain actions that
can be taken by a PM to eliminate poor en-
gineering discipline, poor documentation, or
poor planning. This chapter will address
methods and principles which can help a PM
dealwith the complexity and difficulty of large
scale software system development. In deal-
ing with these problems, the common
denominatoris a disciplined system engineer-
ing approach incorporating the principles of
software engineering.

9.2 SOFTWARE ENGINEERING

As mentioned in Chapter 2, the term software
engineering is relatively new. Today there is
some debate as to what constitutes software
engineering, but most people agree that ap-
plyinig the term software engineering to the
software development process implies:

(a) The application of proven methods ateach
step of the process, including accepted prac-
tices, standards and procecures;

(b) The development and use of software
tools and aids;

(¢) The generation of specific documents
during the various stages of the development
process;

(d) A traceable path from the system require-
ments down to the final deliverable product.

For these proven methods to be effective in
controlling software development, they must

9-2

be accepted and practiced by the software
developer. Mere proposal promises and con-
tractual language are not sufficient. To
achieve quality software which performs to
specifications, is reliable, and is reasonably
priced, these methods must be ingrained in
the contractor’s software organization. Table
9-1 lists some of the proven methods for
software development.

All engineering disciplines develop tools and
aids to help the practitioner apply engineering
theory. Because software engineering is a
relatively young discipline, it doesn’t have the
wealth of tools so readily available to its older
sister disciplines. Much progress is being
made, however, and currently available tools
and aids include:

(a) Structured design and programming;
(b) Inspections and walkthroughs;
(c) Computer aided software engineering;

(d) Program design languages;

e Visible Training and Education Program
e Institutionalized Practices and Procedures

¢ Defined Roles With Systems, Hardware, and
Test Organizations

¢ Adherence to a Software Development Plan
o Institutionalized Internal Inspection Procedures
e Structured Design and Programming
® Product Oriented WBS for Financial Control
o Internal independent Verification and Valiciation (IV&V)
e Strong Configuration Management
- Software Development Library
- Problem/Trouble Reporting System

e Visible Status information

Table 9-1 Proven Methods for Software
Development

(e) The Ada programming language;

(f) Object Oriented Design and Program-
ming.

Documenting each step of thae software
development process is absolutely essential.
Not only does one need an effective way to
communicate the rate of progress, one also
needs a well-documented final product.
Since documentation is the only tangible
evidence of the resulting product, documen-
tation must be generated as one progresses
through the various stages of software
development. One cannot do a very effective
job of generating software documentation
after the fact.

One must have a clearly defined path fromthe
top level system requirements down to the
various modules or units of code. This en-
sures that the delivered product satisfies the
system requirements. It can be accomplished
through the use of a requirements’ matrix
which shows how each system level require-
ment is satisfied by a particular module or
segment of code. This process can be
automated.

9.3 GUIDELINES AND RULES

Over the past 30 years, certain guidelines and
rules have evolved to help a PM successfully
complete a software development program.
One must keep in mind that the guidelines
and rules given below are not just recipes or
checklists to be blindly followed in order to
ensure success. PMs must understand how to
customize these guidelines and rules to the
requirements of the program. They may
choose to ignore any one of them as long as
they are aware of the risks and have planned
for dealing with them. The following
guidelines provide the PM with software
development planning and organizational

Chapter 9 Management Principles

principles which place software development
in the perspective of the overall picture of
system development:

(a) When planning and directing a program,
PMs must make decisions based on a "system"
perspective. They must review their alterna-
tives and not allow either hardware or
software to exclusively drive their decision.
All decisions must consider long term system
effects.

(b) PMs must provide a forum for integrating
the system development. Several techniques
are available and should be part of both the
government’s and the contractor’s review
process. These techniques include stringent
interface controls, reviews, and audits. All
interfaces between software modules and be-
tween software and hardware must be clearly
defined and strenuously controlled. Techni-
ques such as reviews and audits will be dis-
cussed in the next section.

(c) Large investments up front can have sig-
nificant leverage on reducing later system
operation and support costs. Investing resour-
ces during the system and software require-
ments analysis phases can result in a better
understanding of the user’s requirements and
a more stable baseline for design. Early ex-
penditure of resources also provides the
greatest amount of leverage in preventing er-
rors, The bulk of the errors (30% to 70%) can
be detected during the time when error cor-
rection is the cheapest [2].

(d) Software resource planning must remain
stable once the program starts. Software
development has an inherent resource and
schedule profile which means that the overall
schedule cannot be stretched out without ad-
versely affecting software development.
More important, squeezing the schedule can
be a prescription for disaster. It is not always

Chapter 9 Management Principles

possible to add manpower to solve a software
schedule slip [3].

(e) The software architecture should be the
major driver in determining hardware par-
titioning. In the past, PMs paid more atten-
tion to hardware because they understood it
best. Today the PM must consider the real-
time requirements of the system and whether
parallel processing and/or distributed
processing will meet the overall require-
ments. The software architecture will often
drive the hardware architecture.

(f) Identification of the software architecture
should be performed simultaneously with the
requirements definition and systems analysis
tasks. To accomplish adequate hardware and
software tradeoffs, the software must be
viewerd not only as the system integrator but
as a system in its own right. Software develop-
ment is usually in the critical path of the over-
all system development.

(g) The PM should stimulate innovation and
not be stifled by rules and regulation.
"Thought first, regulations second" should be
the theme pursued by all system managers.
New approaches should not be surreptitiously
dismissed. DOD-STD-2167A, "Defense Sys-
tem Software Development," is only a start and
better approaches will evolve. This is not to
say that DOD-STD-2167A stifles innovation.
Although the standard embraces the "water-
fall" approach to the software development
process, it does allow for other advances such
as rapid prototyping, evolutionary develop-
ment, and other process models. In practice,
the waterfall model is best suited for "prece-
dented" systems (i.e., systems that have been
developed at least once). For "unprece-
dented" systems, or systems that are totally
new, other models such as Boehm’s "spiral”
model may be more appropriate.

9-4

(h) PMs must plan for growth and evolution.
Experience has shown that the user cannot
initially handle all of the new functions at
once, even if the developers can deliver it [4].
Fox cites the example of the Apollo command
and control system developed by IBM. When
the program manager was asked why there
were over fourteen (14) releases to the
software, he replied that there were two major
reasons for this. First, the hundreds of
operators monitering consoles and interact-
ing with the computer could not absorb
operating procedures in big doses -- they had
to absorb them a piece at a time. Capability is
best provided piecemeal. Second, they couid
not predict very far in advance what the users
would want or what would be needed in the
control system [4]. The software architecture
and implementation, therefore, should be
specifically pointed toward maximum
modularity, changeability, and growth poten-
tial. The PM’s primary concern should be life
cycle cost. Post deployment software support
needs to be examined early during develop-
ment to provide for cost effective lifetime
support.

(i) The procurement process should allow for
a flexible, robust, and expandable software
design. Ways must be found to reward innova-
tive contractors. Some suggestions are to
consider award fees or cost incentives based
on post-delivery operation and support. The
fees or incentives could be based on the ability
to perform the intended functions, ease of
support, ease of modification, utility of
documentation, and effectiveness of the
human interfaces. The intent should be to
force the developer to focus on long term
goals and a supportable system. Also impor-
tant, but more difficult to identify, are the
front end decisions and methods that achieve
these goals. What the developer does in the
beginning has the most influence on the end

Chapter 9 Management Ptinciples

Are software code reviews conducted?

development process?

representative of the work performed?

Is a mechanism used for ensuring traceability between the software top-level and detailed designs?
Are internal softwarce design reviews conducted?
Is a mechanism used for controlling changes (o the software design?

Is a mechanism used for ensuring traceability between detailed design and code?

Are formal records maintained of unit (module) development progress?

Is a mechanism used for controlling changes to the code?
(Who can make changes and under which circumstances?)

Is a mechanistm used for configuration management of the software tools uscd in the

Is a mechanism uscd for verifying that the samples examined by the software QA are truly

Is there a mechanism for assuring the regression testing is routinely performed?

Is there a mechanism for assuring the adequacy of regression testing?

Table 9-2 Process Control

product. The developer must begin with a
good process already in place.

9.4 PROCESS CONTROL

Process control is the key to achieving
software quality. The process is the method
used by the contractor for developing
software. Achieving control of the process
means that the process is predictable and
measurable. A controlled process will mini-
mize variability. How does a PM assess the
contractor’s process control system and pro-
cedures? Table 9-2 provides a series of ques-
tions developed by the Software Engineering
Institute [S] as an aid in making this assess-
ment. The PM must know that the process
represents the contractor’s commitment,

9-5

philosophy, methodology, procedures, and
standards for doing business. Process control
and process management are principles of the
Deming philosophy [6] for customer satisfac-
tion. Application of Deming’s philosophy re-
quires the commitment of top management.
Thatis why it is so important to select the right
contractor; these values are not learned over-
night.

What follows are some program management
guidelines which focus on the day-to-day
management of software development.

All Software Tasks Must be Discrete - This
guideline is fundamental in determining how
well the contractor can plan the effort. PMs
must not allow level of effort or percentage

Chapter 9 Management Principles

complete approaches because this closes the
door on program progress visibility, The con-
tractor must be able to define the work pack-
ages associated with the work breakdown
structure (WBS) in sufficient detail to control
and manage the effort. Each task should have
a definite start, a definite end date, and a
specific output. These tasks are normally on
the order of 30 to 90 man-days in duration.
Planning is usually accomplished as a rolling
wave, the immediate six months or more are
planned in detail with the remaining effort
generally only visible at higher levels in the
WBS. The entire effort should be totally
scoped in time and resources at the very
beginning of the project. If the program un-
certainties are tuo great, this may not be pos-
sible.

Quantitative Requirements are Managed
Through Margins - Quantitative require-
ments lend themselves to measurable control
methods. Computer memory and through-
rut, for example, are often tracked during
evelopment. In the beginiiing, estimates of
software size and timing will be made and
compared against target values to determine
margins. Later, design language estimates
can be made and these estimates will continue
through the design process. As code is writ-
ten, actual measurements can be made. Early
planning should allow for contractor and
government margins with the use of a dis-
ciplined and documented control system,
One approach is to baseline an estimate of the
memory and throughput utilization on a
month'y basis. An alert or trigger threshold
value can initiate action should the threshold
values be exceeded.

Identify and Track Risk Areas - The contrac-
tor and PM should be working as a team to
manage program risk. An important in-
gredient of any program is to assess and
reduce the risk as early as possible and before

Milestone II. Risk management is an ongoing
process. The first step is to identify risk areas,
document themin the Software Development
Pl.n, and devise a scheme for dealing with
each risk item. These items are then tracked
throughout development. A convenient
method is to have a "Top Ten" list of risk areas
that are tracked at least on a monthly basis
along with a contingency plan for mitigating
the identified risks. The plan should establish
risk reduction objectives and schedules, as-
sign responsibility and priority for risk reduc-
tion tasks, and develop a method for periodic
reviews and assessments. Various manage-
ment techniques to reduce risks have already
been mentioned and include:

(a) Rapid prototyping;
(b) Incremental development;

(c) Internal (government) program reviews
(at least monthly);

(d) Top Ten list review;

(e) Early demonstrations and testing of risk
items;

(f) Government inspections and audits of the
software development process.

Some potential problem areas include:
(a) Unrealistic cost and schedule;

(b) Vague or incomplete requirements;
(c) Inexperienced developers;

(d) Inadequate development environment
(tools and methodology).

Identify and Track Special Interest Items -
Special interest items such as Government

Furnished Items (hardware, software and
data) and subcontract items should also be
tracked. Any items delivered to the contrac-
tor or received from the contractor are can-
didates for tracking. Certain critical internal
deliveries such as code delivered for testing
are candidates as well. The same approach
used for tracking the risk items above can also
be used to track special interest items,

Requirements Must be Testable and Trace-
able- Requirements must be testable inorder
to validate the system performance. Insome
cases, actual testing may be impractical due to
physical constraints, cost, or other considera-
tions. When this is the case, system perfor-
mance must be validated through inference or
analysis and reflected in a testability matrix.
Traceability is a key factor throughout
development and becomes even more impor-
tant during follow-on support. Requirements
must be traceable from the system specifica-
tion down through design, integration testing
and DT&E. Traceability must occur in both
directions--results of a test report must track
back to the requirements. The only effective
way to handle this for large programs is
through some form of automation,
Requirements’ traceability should be an in-
tegral part of the contractor’s configuration
management process.

Use Checklists for Design Reviews - Without
adequate preparation design reviews can be-
come nothing more than hectic "dog and pony
shows." Design Reviews should be a major
part of the software quality program. Pro-
gram office personnel should be prepared for
a review by arming themselves with ap-
propriate analyses and a checklist of impor-
tant and critical questions and adhering as
much, as possible, to an agreed to formal
agenda. The PM must do his homework
through verification and analyses of critical
areas that support the design approach. MIL-

Chapter 9 Management Principles

STD-1521B, Technical Reviews and Audits for
Systems, Equipments, and Computer Software,
provides guidance on preparing checklists for
various reviews. The checklists should also
include special interest items and risk areas.

Formal Reviews Must be Viewed as Quality
Gates - PMs must approach the formal review
as a checkpoint for determining whether or
not the project is ready to proceed to the next
phase. A contractor should not be allowed to
complete a design review if it hasn’t satisfied
all the requirements imposed by the design
review. If the PM decides to proceed to the
next phase with a less than satisfactory techni-
cal review, because of political or schedule
considerations, the risks involved must be
known and a contingency plan developed.
Too often, however, the risks are much higher
than perceived. It is essential to have a stable
baseline since early mistakes become much
harder and costlier (in time and money) to
correct when they are discovered late in the
development process. Proceeding before one
is ready, usually increases the program risk.

Conduct Periodic Inspections and Audits -
Periodic government inspections and audits
can be useful when applied consistently.
Despite the fact that auditors can be frequent-
ly wrong in their assessments, the audit is an
essential tool of managements. Whether the
audit is right or wrong, the very process of
having an audit imposes discipline on the or-
ganization, Ideas on organization, design, and
process are interchanged. Often the project or
program improves because of the intensified
attention [4]. Inspections generally use a
checklist to determine the specification and
design completeness. Audits are similar to
inspections with the additional factor of
determining requirements’ traceability.
These techniques can be valuable when ap-
plied to the interfaces. What better way to
integrate the system than to ensure that the

Chapter 9 Management Principles

hardware and software properly communi-
cate with each other? In addition to inspec-
tions, the contractor should conduct
walkthroughs as a standard business practice
[7]. When conducting inspections and
walkthroughs, it is important that the contrac-
tor establish clear entry and exit criteria.

Use Statistics Generated by Contractor In-
ternal Reviews - The contractor must have a
system in place that includes a method for
assessing the quality and progress of the work.
The Software Development Plan should iden-
tify the software development system and in-
dicate how government visibility will be
provided. This is accomplished by contrac-
tually requiring the developer to provide the
assessment data to the program office. The
purpose is not for the government to manage
the contractor’s work (that’s the contractor’s
job) but to communicate program develop-
ment status and product quality, The contrac-
tor should gather statistics from the internal
walkthroughs and inspections and use this
data to manage the software development.
The contractor’s mechanism for software
development constitutes the process control
system. A software process control system is
analogous to amanufacturing process control.

Integration Must be Visible on M:.ster
Schedule - Integration brings the interfaces
together. They occur at all levels: software to
software, software to hardware and software
to systems. Integration and integration testing
must be planned and be highly visible to the
government PM. The development of
hardware and software must be approached
as a maturing process strategy. Pieces of the
system should be brought together in a
planned, logical fashion. Some level of con-
fidence in the hardware and software com-
ponents must be established before
proceeding with higher level integration. If
this isn’t done, problems that occur during

9-8

integration will be difficult to diagnose since
they may be in either component--hardware
or software. Integration of critical system
components should be closely tracked
throughout the development process.

9.5 REQUIREMENYS/PROTOTYPING

The PM can have a major impact on the suc-
cess of the program during the requirements
definition phase. Investment of time and
resources in requirements definition has the
biggest schedule and cost peyoffs. Cleuar and
unambiguous requirements, however, seem
to be an elusive ingredient in any program.
Since software development is an intellectual
process that must be captured in some tan-
gible form, how does one approach require-
ments definitions? Two tools available to aid
the process are formal specification develop-
ment tools and rapid prototyping.

9.5.1 Specification Development Tools

Specifications are generally written in prose
and they suffer fromsignificant interpretation
and traceability problems. They are also very
error prone. Formal specification develop-
ment tools are designed to alleviate these
problems. Because a formal specification
language is much more specific than prose, it
can be automated. This provides the use of
computer assistance to check for errors, com-
pleteness, consistency, and traceability.
Some commonly used formal specification
development tools are:

PSL/PSA: Problem Statement Lan-
guage/Problem Statement Analyzer. This
tool was originally developed for data
processing applications. It is widely used in
other applications [8].

RSL/REVS: Requirements Statement Lan-
guage/Requirements Engineering Validation

System. This is a real-time process control
tool [9].

SADT: Structured Analysis and Design Tech-
nique. This tool analyzes the interconnecting
structure of any large, complex systems, It is
not restricted to software systems [10].

SSA: Structured System Analysis. The Gane
and Sarson version is used in data processing
applications that have database require-
ments. The DeMarco version is suited to data
flow analysis of software systems [11,12].

Gist: Textural language developed at USC/In-
formation Sciences Institute. This tool is use-
ful for developing object-oriented
specifications and designs. It is a refinement
of specifications into source code [13].

9.5.2 Rapid Prototyping

Rapid prototyping may be the most powerful
tool available to analyze and refine require-
ments and should be encouraged as a
requirements’ definition tool from the very

Chapter 9 Management Principles

beginning. The PM should incorporate rapid
prototyping as part of the contract.

A software rapid prototype is an analytical
tool for refining software requirements. It is
used during the requirements analysis phase
with minimal constraints on choice of
programming languages, documentation, and
use of standards. In essence, it entails the
almost unconstrained development of a
software package with the primary goal of
achieving quick results,

The objective is to compare these quick
results with the initial system requirements.
By allowing the user a quick look at the poten-
tial end product, they will be better able to
answer the questions "Is this what you
wanted?" or "Is this what you meant?"
Documentation is minimal and it is not
deliverable. Once a decision is made to
deliver, it ceases to be a rapid prototype. This
is analogous to the hardware requirements
and design process of using engineering
models, breadboards and brassboards. Thisis
not to say that one would not use an approach
of developing software using a "prototype" (as

SYSTEM
REQUIREMENTS

SOFTWARE
AEQUIREMENTS
' SYSTEM
1 DESIGN
DETAIL
CODE INTEGRATION
DESIGN l TEST
DETAIL
CODE INTEGRATION }
DESIGN TEST
e T e e R _]
DETAIL
I CODE INTEGRATION
l DESIGN TEST l
SYSTEM |
TEST i
} QUALIFICATION i

; OFERATIONS }
Lo

Fig. 9-2 Incremental Development

9-9

Chapter 9 Management Principles

opposed to a "rapid prototype") for delivery
and operation. This is yet another method
called evolutionary development and it will be
discussed later in this chapier. The value of a
rapid prototype is in the capability to better
communicate software requirements during
the requirements analysis process. What bet-
ter way to communicate with the users than to
present them with an artifact that represents
the system? Often the rapid prototype will
represent the user interface (controls and dis-
plays) providing for both input and output. It
may execute representative scenarios or
operational profiles to determine the validity
of the specifications. The prototype can be
used throughout development, including Full
Scale Development, to test out design con-
cepts as well as develop a priori test results for
future testing of the actual product. One must
remember that a rapid prototype does not
evolve into a deliverable software product. It
should be discarded once it has been used to
revise and refine the requirements.

9.5.3 Incremental and Evolutionary
Development

Incremental and evolutionary development
are techniques for dealing with large, complex
systems. Figure 9-2 illustrates incremental
development. Design begins after the system
and software requirements have been
baselined.

The objective of incremental development is
to produce a complex software product by
building the total system capability in ever
increasing increments. The second software
delivery or increment will have more
capability than the first delivery, the third
more than the second and so on. As the saying
goes "If you have to eat an elephant, eat him
one bite ata time." Software development for
Inter-Continental Ballistic Missiles (ICBMs),
for example, is developed this way. The

9-10

Operational Flight Program (OFP) may be
designed and developed in three increments.

This incremental approach must be pre-
planned with the overall development
strategy and test plan. The first system level
capability to be demonstrated is the capability
to fly from point "A" to point "B". This re-
quires the appropriate planning for develop-
ing and integrating both hardware and
software components in support of the
scheduled events. The first increment would
have the basic flight control, navigation,
guidance, and task control functions. The
next increment would add the system
capability for multiple re-entry vehicle
deployment. Again, meticulous planning
would have preceded this activity to make
sure that the appropriate hardware and
software components are designed and
developed on an integrated schedule. For the
software, this second increment or "build"
would have the same capabilities as the first
increment plus the capability to deploy multi-
ple re-entry vehicles during a flight. The final
software increment may contain maintenance
diagnostic capability and continuous naviga-
tion instrument calibration capability. One
begins with a minimal program and then adds
additional capability until the complete sys-
iem is developed.

Evolutionary development is very similar to
incremental development but it is more long
term. While incremental development oc-
curs during a single development phase, typi-
cally during FSD, evolutionary development
can occur over several phases or be part of a
pre-planned product improvement approach.
Evolutionary development is the recom-
mended approach for large Command, Con-
trol, Communications and Intelligence (C3I)
systems. Rapid prototyping can be combined
with this approach to help define the require-
ments. The evolutionary approach helps to

deal with "fuzzy" requirements where the
general requirements are known but the
details are lacking. For example, in a large
i program the PM may know that he must
design a system to communicate with multiple
users, be able to react to rapidly changing
threats, and be able to adapt to the environ-
ment in real-time. He may not, however,
know the requirements of all the users, who
may in turn not know themselves until they
are able to work with the actual equipment in
a scenario or simulated environment. The
evolutionary development approach would
develop an early model with flexibility and
growth specifically as part of its design. This
model would then be used under actual or
simulated conditions to provide feedback to
update the requirements. This approach
could continuc indefinitely.

Plan
- Cost and schedule
- Development and support

Sclect tangible inchstonces

Review schedule after requirements are defined

Scrub requirements

Build rapid prototypes

Create/Update soltware size and cost estimates

Design within the system’s constraints

Don't let hardware neediessly constrain software
delopment

Establish CRWG and provide software support

Beware of government furnished products and
subcontracts

Strongly consider incremental development for
large systems

Create and manage schedule, memory,
throughput margins

Understand the contractor’s development
process

Establish an internal control system

Use software metrics

Sclect resources and language

Fig. 9-3 Program Management Checklist

Chapter 9 Management Principles

9.6 SUMMARY

The problems associated with managing
software development can be overwhelming.
But one must never forget that software
development is manageable. This chapter
has discussed some of the tools available to
the program manager to help in planning a
development strategy as well as assisting in
the daily management of the program. The
Program Management Checklist in Figure 9-3
serves as an additional reminder of the key
elements that have been discussed
throughout this text.

9.7 REFERENCES

1. Fairley, Richard E., Software Engineering
Concepts, Tyngsboro, Mass., McGraw Hill
Book Co., 1985.

2. McCabe, Thomas J. and G. Gordon Schul-
meyer, "The Pareto Principle Applied to
Software Quality Assurance," Handbook of
Software Quality Assurance, Ed. G. Gordon
Schulmeyer and James 1. McManus, New
York, NY, Van Norstrand Reinhold Com-
pany Inc., 1987.

3. Brooks, Frederick P., The Mythical Mun-
Month: Essays on Software Engincering, Ad-
dison Wesley, July 1978, Second Printing.

4. Fox, Joseph M., Software and Its Develop-
ment, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1982,

S. Software Engincering Institute, A4 Method
for Assessing the Software Enginecring
Capability of Contractors, September 1987.

6. Deming, W. Edwards, Out of the Crisis, MI'T
Center for Advanced Engineering Study,
Cambridge, MA, 1989,

Chapter 9 Management Principles

7.Fagan, M., "Design and Code Inspections to
Reduce Errors in Program Development,"
IBM Journal, Vol. 15, No.3, 1976.

8. Teichow, D. and Hershey, E., "PSL/PSA: A
Coraputer Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems," Transactions Softwaie
Engineering, Vol. SE-3, No. 1, January 1977.

9. Alford, M., "A Requirements Engineering
Methodology of Real-Time Processing Re-
quirements," Transactions Software Engineer-
ing, Vol. SE-3, No. 1, January 1977.

10. Ross, D., "Structured Analysis (SA): A
Language for Communicating Ideas", Trans-
actions Software Engineering, Vol. SE-3, No.
1, January 1977.

11.Gane, C. and T. Sarson, Structured Systems
Analysis: Tools and Techniques, Prentice-
Hall, Englewood Cliffs, NJ, 1972,

12. DeMarco, T., Structured Anclysis and Sys-
tem Specification, Yourdon Press, NY, 1978,

13. Balzer, R., Gist Final Report, Information
Sciences Institute, USC, February 1981.

9-12

CHAPTER 10

Chapter 10 Software Configuration Management

SOFTWARE CONFIGURATION

MANAGEMENT

10.1 INTRODUCTION

The dictionary defines configuration as the
"relative disposition of the parts or elements
of an item" and defines management as the
"act or manner of handling, directing, or con-
trolling" [1]. Configuration management
(CM), then, can be generally defined as the
act of controlling all elements of a particular
item. When applied to weapon systems, CM
is the system engineering management
process that: creates the system components,
identifies the functional and physical charac-
teristics of those components, controls chan-
ges to those characteristics, and records the
status of any changes implemented. It is the
means through which the integrity and con-
tinuity of design, engineering, and cost
tradeoff decisions made between technical
performance, producibility, operability, and
supportability are reported, communicated,
and controlled [2].

Software configuration management (SCM)
is formally defined as the process used to

identify the software configuration com-
ponents of a system for the purpose of sys-
tematically controlling changes to the
configuration and maintaining the integrity
and traceability of that configuration
throughout the system life cycle. This chapter
explains the basic elements of SCM and shows
how the application of these elements to the
software development cycle facilitates the
transformation of software into a visible and
manageable entity [3]. Figure 10-1 illustrates
the interrelationship of the four functions of
SCM: identification, control, status account-
ing, and audits [4].

The developer (a contractor or another
government agency) and the government
procuring agency both apply CM procedures
to a specific development program. This
chapter concentrates on CM practices as
described in DOD-STD-480A, Configuration
Control, Engineering Changes, Deviations, and
Waivers, MIL-STD-483A, Configuration

Chapter 10 Software Configuration Management

Management Practices for Systems, Equip-
ment, Munitions, and Computer Resources and
DOD-STD-2167A, Defense System Software
Development.

10.2 CONFIGURATION IDENTIFICA-
TION

Configuration identification determines how
to divide the software system for ease in
managing and controlling change. A system
comprises a physical end a functional con-

Software configuration identification means
specifying and identifying all system software
components throughout its life cycle, fromthe
development of specifications to the genera-
tion of actual code [4]. The definition of
Computer Software Configuration Items
(CSClIs), along with their functional and
physical characteristics, normally occurs
during the Demonstration and Validation
(D/V) phase of the acquisition life cycle and
prior to the System Design Review (SDR).
MIL-STD-483A, Appendix XVII, provides

Does the systern satisfy

What changes have been made

CONFIGURATION MANAGEMENT

STATUS
ACCOUNTING

the stated needs 7

to the system ?

How do | control changes

What is the system

CONTROL

IDENTIFICATION

to the system ?

configuration ?

Fig. 10-1 Configuration Management Functions

figuration. Physical Configuration refers to
the detailed design or physical attributes and
it is normally described by hardware drawings
and software code listings. Functional Con-
figuration refers to the functions a system or
unit performs and it is primarily established
by hardware and software requirements’
documents [3]. The functional description of
software is documented in interface specifica-
tions, product description, test procedure and
detailed design specifications.

10-2

the following guidance for selecting con-
figuration items (CIs):

(a) Select ClIs based on functional and perfor-
mance parameters which must be controlled
to satisfy an overall end use function (e.g.,
defensive avionics system software);

(b) Select Cls which require an optimum level
of government control during acquisition
(e.g., code verification software);

(¢) Select ClIs based on the need to control
their inherent characteristics or to control
their interface with other Cls (e.g., controls
and displays software);

(d) Whenselecting Cls, evaluate other factors
such as schedule, the engineering release sys-
tem, financial impact, and new, modified, or
existing design parameters.

The process of configuration identification
provides a way to isolate system components
o control their development. There are four
steps to software configuration identification.
First, the software system is broken down into
a number of known manageable parts or
CSClIs. Second, these CSCIs are uniquely
named. Third, as these parts change with time,
the various versions that appear are uniquely
identified. Fourth a change control process is
instituted to ensure knowledge and control of
all changes that occur throughout the lifecycle
of the program. The first step is closely as-
sociated with the processes of specification,
analysis, and design. Steps two and three re-
quire rigorous enforcement of step four,
standards and procedures. Figure 10-2 repre-
sents a generic breakdown of a software sys-
tem into various CSCls, computer software
components ((CSCs), and computer software
units (CSUs). The contractor will normatlly
propose a list of CSCIs based on the Request
For Proposal (RFP) Work Breakdown Struc-
ture (WBS), the design requirements,
management structure, and available resour-
ces. This structure of CSCIs should be
reflected in the contractor’s Software
Development Plan (SDP) and Configuration
Management Plan (CMP). The contractor’s
CM methodology is documented in the CMP.
The CMP and SDP are normally deliverables
on software programs. They are presented for
approval to the government in accordance
with the provisions of the Contract Data Re-
quirements List (CDRL).

10-3

Chapter 10 Software Configuration Management

Care must be taken when selecting the num-
ber of configuration items. Too many con-
figuration items may increase the
management and administrative efforts re-
quired to adequately track and control the
status of the CSCIs. This additional effort
may delay the schedule and increase the cost
of the software development. On the other
hand, too few CSCIs may minimize the pro-
gram office’s visibility into the software
development process, tend to reduce control
of the software design and possibly lead to
operational deficiencies.

While the process of Cl decomposition allows
for the management of small units, one should
remember that software, like hardware, is a
sum of its parts and must be managed from a
system approach. CM is the primary respon-
sibility of the program office. Unfortunately,
in many program offices the CM function be-
comes a low priority task managed by a
caretaker group and is not considered an in-
tegral participant in the daily management of
the program. Because of this, the Program
Manager (PM), as well as other functional
managers, may inadvertently affect the con-
figuration of the system in their routine inter-
faces with the developer. There should be a
strong relationship between the CM and
other functional areas in the program office.

10.3 CONFIGURATION CONTROL

Once the system configuration is established,
the next step is to establish a method to
manage and control changes. Unlike
hardware, software is an intangible product
difficult to "see" and more difficult to manage.
Software can still be properly managed, how-
ever, by applying configuration control
methods to the development process and on
the products of that process. Edward Bersoff
defines software configuration control as
"..the orchestration of the processes by which

Chapter 10 Soriwars Configuration Management

CIDS Critical tem Development Spec
CSC Computer Sottware Component
csu Computer Software Unit

IRS Interface Requirements Spec

{ SYSTEM
]
L
SEGMENT SEGMENT
(SSS) (SSS)
|
CSCl ’ RS HWCI ‘ HWCI
(SRS) (PIDS) | PiDS)
[l i |
rf:sm L RS l [/ HWCI ‘ hwe || Hwol HWCI
(SRS) (PIDS) (PIDS) J (CIDS)
_, 1
C |
CsCl IRS HWCI
(SRS)
_ j T B
cSC] csC csC
I
L 1 1 l ~ l —
o | = Jlee | Cowd Cow D) [Lose |
/Eétj\ - cslu ("csu csu “Csu
___,/) N k_) (\\,//

LEGEND
PIDS Prime ltem Development Spec
SSS System/Segment Spec
SRS Software Requirements Spec

Fig. 10-2 Breakdown of Softwa.e System

the software portion of a system can achieve
and maintain visibility throughout its journey
through the life cycle. It provides the tocis
(i.e., documentation, procedures, and an or-
ganizational body) to control the system im-
plementation as well as changes to it" [4].

The configuration and change control process
includes: interface control, baseline manage-
ment, Configuration Control Boards (CCBs),
Software Configuration Review Boards
(SCRB), Software Problem Reporting (SPR),

software Engineering Change Proposals
(ECPs), test asset control, test software con-
trol, physical test item control, integration
control, and version control.

To understand the configuration control
process, one has to understand the differences
between Class I and Class II changes. Class I
changes effect form, fit, or function; althougii
other factors, such as cost or schedule, can
cause a Class I change. All Class I changes
must be submitted to the Government CCB

10-4

for approval. All other changes are Class II
changes. Class II changes do not change the
scope of requirements, do not effect cost, or
change the contracted schedule. Examples of
Class Il cuanges are editorial changes in
documentation or minor changes which don’t
affect the established baselines or the func-
tional allocation of the CSCI.

For government approved Class I, the govern-
ment must negotiate with the contractor
before the change can be implemented. A
contractor may proceed to implement a
proposed Class I change before government
approval, but he proceeds at his own risk.

Class II changes only require government
concurrence on the classification before the
contractor may proceed with a change. This
can be accomplished by government plant
representatives. The PM should ensure that
the contractor supplies the program office
with copies of all Class I and Class II Draft
changes as well as any Class 1l changes that
have been approved by local authorities.
MIL-STD-483A, Appendix XIV discusses
software Class 1 and I changes.

10.3.1 Interface Control

Aninterface is the functional or phys.cal char-
acteristics which serve as a common boundary
between two or more items. In system
development, these boundaries are found be-
tween hardware and software, hardware and
hardware, operational communication stand-
ards and the system, and software and
software configuration items. The interfaces
are defined by electro-mechanical charac-
teristics, reliability and maintainability re-
quirements and software format, timing, and
programming language’s requirements.

The program office controls all external inter-
faces that effect the system under develop-

10-5

Chapter 10 Software Configuration Management

ment through groups such a CCB, anInterface
Control Working Group (ICWG), a Test
Planning Working Group, and a Computer
Resources Working Group (CRWG). The
contractor controls all internal interfaces to
the program under development through the
contractor’s own configuration control
process and change management process.

The government ICWG concerns itself with
issues external to the product such as inter-
operability, logistics, and operational issues.
The ICWG is usually chaired by the procuring
agency’s engineering representative and is
comprised of representatives from the
development organizations, user organiza-
tions, and software support activities as shown
in Figure 10-3. The ICWG, in coordination
with the CRWG, define and control current
and proposed software and hardware intcr-
faces, obtain and assess quantitative interface
data, and investigate system and subsystem
inter-operability requirements.

During Full Scale Development (FSD) many
programs delegate the responsibility for
product interface control to the development

contractor. As the system matures and
proceeds toward test and delivery, the govern-
| .
{ Chair {
PROCURING |
AGENCY l
|
| | |
._i , |
[. ! b ‘
I SOF::IOA:: | DEVELOPMENT i USER
1 sV g ORGANIZATIONS ORGANIZATIONS [
z ACTIVITY ! i I
i i i

Fig. 10-3 Interface Control Working Group

ment gradually assumes more of this respon-
sibility. The contractor’s ICWG is usually
chaired by an individual from the engineering
organization. Associate contractors are mem-

Chapter 10 Sottware Configuration Management

bers and the responsible DOD agency may be
an observer. The contractor’s ICWG docu-
ments agreen...1its on CSCI interfaces and
hardware configuration item (HWClIs) inter-
faces involving more than one contractor.
The contractor’s ICWG should review all en-
gineering and interface changes before sub-
mitting then to the Program Office [5].

10.3.2 Baseline Management

Baseline management is the process of
managing the derivation of the contractual
requirements into implementable functions
and the integration of those functions into a
system that demonstrates compliance with
these requirements.

Within each of the development phases,
specific reviews (SRR, SDR, PDR, CDR)
have been established to examine the
contractor’s compliance with the require-
ments of the contract and his progress toward
delivery of a system. This is accomplished
through documentation such as specifica-
tions, design documentation, management
reports, and test reports. At the completion
of each review these documents are approved

and a contractor’s baseline is incremented to
indicate government approval of the
contractor’s design and progress at that par-
ticular stage. Documented deficiencies will
indicate the contractor’s progress toward
meeting the requirements’ baseline. Tradi-
tionally there have been three baselines, the
functional, allocated, and product baselines.
The provisions of most contracts require that,
as baselines change, the system integrity be
maintained. Each baseline indicates a state of
design that becomes progressively more
restrictive and finally represents the actual
hardware and software developed.

A functional baseline is typically established
at the completion of the System Design
Review (SDR) and approval of the Type A
system specification. Formal configuration
control for the system is initiated once the
system specification has been approved. The
allocated baseline for the system is estab-
lished once the allocated baseline for each CI
is determined and the Software Require-
ments Specification (SRS) and Interface Re-
quirements Specifications (IRS) for each
configuration item have been approved. For
hardware, this normally occurs at the Prelimi-

1

Senior User Reps

CHAIR: Senior Mauager (Prime) '
CO-CHAIR: System Configuration Manager (Prime)
CO-CHAIR: System Configuration iManager (Vendor) i

ol

i
]
!

{ . l i B i L :
? PROJECT MANAGER ! ! VENDOR % . ADDIT!ONAL REPS

i
; Tech Support Staff ‘ Systems Manager ! Senior Management |
} - Systems ‘ H/W Manager | : Human Factors
l - Hardware ; S/W Manager ; _ Training i
E - Software . Program Manager ; ; Test & Evaluation :
; QA Manager t OA Marager | ; IV&V
i H/W Config Manager i H/W Config Manager | i
i S/W Config Manager : ;

S/W Config Manager
Doc Manager

!

Fig. 10-4 Contractor CCB

10-6

nary Design Review (PDR). For software,
the allocated baseline is normally established
at the completion of the Software Specifica-
tion Review (SSR) but no later then the CDR.
The product baseline is typically established
at the completion of the Physical Configura-
tion Audit (PCA) after the Type C specifica-
tions are approved. When programmatic
issues preclude the PM from formally estab-
lishing a baseline, alternatives include an in-
formal or developmental baseline agreement
between the contractor and program office.

Informal baselines imply a sharing of con-
figuration control responsibility between the
contractor and the program office. It allows
the contractor a large degree of latitude in

Chapter 10 Software Configuration Management

control changes to the system. Figures 10-4
and 10-5 illustrate typical membership of
government and contractor CCBs. The com-
position of both CCBs are very similar; how-
ever, the responsibility of the government
CCBiis at the system level, The contractor has
additional configuration control respon-
sibilities at lower hierarchical levels for both
software and hardware as depicted in Figure
10-6 [3].

10.3.4 Software Configuration Review Board

A Software Configuration Review Board
(SCRB) reviews and evaluates all proposed
changes to the software baselines and deter-
mines the processing and disposition of

—

VOTING MEMBERS

Engineering Rep
Logistics Rep
Training Rep

Contracting Rep

Supply/Support Rep
Doc Management Rep

CHAIR: Command Config Manager
Config Management Secretariat

L

|

ADDITIONAL REPS
Program Manager
Systems Engineer
Program Config Manager

Program Log Manager
Program Training Manager
Safety Manager
User Reps
Program T&E Manager

Fig. 10-5 Government CCB

processing changes to the baseline in pursuit
of the correct design and relieves the govern-
ment of the formal structured change control
process. However, the contractor proceeds
onrisk and is not encouraged to formalize the
changes it has initiated.

10.3.3 Configuration Control Board

The Configuration Control Board is the or-
ganizational body within the development or-
ganization responsible for formal processing
of changes to established baselines, The func-
tion of the CCB is to approve, momnitor, and

10-7

software problem reports. The SCRB serves
as a filter for the CCB on software related
matters. Software problem reports, incident
reports, change requests, and change
proposals are first submitted to the SCRB for
review and evaluation. The SCRB deter-
mines if the pending software changes should
be disapproved or forwarded to the CCB for
formal approval as baseline changes. Priorto
its decision, the SCRB would have reviewed a
number of proposed software changes,
prioritized their urgency, and determined if
the changes should be made singly or in com-
patible groupings or block changes.

Chiapter 10 Software Configuration Management

-

cce _]
L

HARDWARE | CCB

SOFTWARE | CCB

CHAIR: H/W Config Manager (Prime)
CO-CHAIR: H/W Config Manager {(Vendor)

]

CHAIR: S/W Config Manager (Prime)
CO-CHAIR: S/W Config Manager (Vendor)

.

1

PRIME VENDOR

Program Manager
Systems Manager

Project Manager
Systems Engineer

S/W Config Manager H/W Manager
QA Manager S/W Manager
User Reps S/W Config Manager
QA Manager
S/W Reps

PRIME VENDOR

Project Manager
Systems Engineer

Program Manager
Systems Manager

S/W Engineer S/W Manager
H/W Config Manager H/W Config Manager
QA Manager QA Manager
User Reps H/W Reps

Fig. 10-6 Configuration Control Board

As with the Configuration Control Board, the
SCRB is also used by both the government
and the contractor. Figure 10-7 illustrates the
typical composition of these two SCRBs.

In the government, the SCRB normally
begins to functions as the government as-
sumes management responsibility of the
baselines and continues during the produc-
tion/support phases of the acquisition cycle of
a weapon system, That is one of the reasons
for including the Software Support Activity as
part of its membership. During the transition
to organic support, the program manager may
choose to have the contractor as a non-voting
member of the SCRB. As a minimum, the
SCRB should be conducted annually in con-
junction with planned upgrades (or releases)
of the software system. However, the SCRB
may be convened at any time for major (criti-
cal) deficiencies discovered in the software.

The software developer typically employs an
internal SCRB during development. Since
the SCRB is a software board, its membership
is made up of mostly software oriented repre-
sentatives. The software manager chairs the

10-8

board and has final approval authority. The
SCRB should meet routinely to act on all
submitted software problem reports (SPRs).
The actions of the SCRB may require the
contractor to submit ECPs and other contract
modifying requests in order to implement a
solution to a problem. Normally if a change
does not effect the baseline, it is implemented
on approval by the contractors CCB. Any
change that affects a program baseline must
be transmitted to the contractors CCB for
disposition [6]. Disposition may take the form

GOVERNMENT

CONTRACTOR

CHAIRMAN

Program Mgr Office

CHAIRMAN
Software Manager

I

Engineering
Logstlics
Test & Eval
QA
S/W Support Agency
VAV
Developar
User Reps

]

S/W Tech Reps
Test & Evai
Systems Engineer
Project Engineer
QA
S/W Config Manager
imegration Reps
SDL Librarian

Fig. 10-7 Software Configuration Review

of internal direction to proceed because the
change does not impact the design haseline or
a transmittal to the Government Program Of-
fice for formal government CCB and follow-
on contracting action.

'The Software Development Library (SDL)
librarian is a key member of the developer’s
SCRB and acts as the board recorder. Since
the SCRB is administered and supported
through the SDL, the SDL librarianis respon-
sible {or tracking the status of the Software
Problem Reports (SPRs), forwarding the
recommended SPRs to the contractor’s CCB
for disposition, incorporating the imple-
mented changes in the SDL, and maintaining
up-to-date records of these reports.

10.3.5 Configuration Control Process

The configuration control process (Figure 10-
8) is « very time consurning and active process.
It is the heart of the configuration control
function. Both the government and the
developer follow a similar internal change
control process which results in software
ECPs forwarded to the government CCB for
evaluation and approval.

The contiguration control process begins with
the initialization of a change to an established
baseline (e.g., allocated, functionai, pro-
gram). These changes may be initiated by
government direction, ICWG activity, or con-
tractor/subcontractor activity. If the change is
initiated by the government, the developer’s
engineering activity, in coordination with its
ICWG, will analyze the technical, cost, and
schedule impacts of the proposed change.
Once a change has been reviewed and
evaluated, the developer will categorize it as
either Class I or II. All software related issues
will be forwarded to the SCRB for review,
evaluation, and disposition. The contractor is
asked to cost this change and participates in a

10-9

Chapter 10 Software Configuration Management

contract modification. If the contractor in-
itiates the change request, the process is
similar. The government CCB dispositions
the change request and formally notifies the
contractor by PCO letter. If it’s an approved
Class I change, the contractor and the govern-
ment negotiate the cost and schedule impact.

Class I changes follow a more formal route
through the CCB. The developer will submit
ali proposed Class I changes to its CCB for
review and disposition. The CCB will deter-
mine if the change should be formally sub-
mitted to the government. If they decide not
to, they may choose to follow an informal
route by submitting preliminary documenta-
tion consisting of an Advanced Change/Study
Notice, an Engineering Change Request, or a
preliminary ECP. If this {»formal documenta-
tion is approved, the government will notify
the developer to submit formal documenta-
tion. The formal documentation may consist
of an ECP, a Specification Change Notice
with specification page changes, a Request for
Deviation/Waiver, an Interface Revision
Notice, and supporting cost data. Once ap-
proved/disapproved, the program office will
notify the contractor and both will monitor
the implementation status.

When Class 1l changes are submitted to the
government, the government’s Defense Plant
Representative Office (DPRO) may approve
the classification and sign off on the change.
Once the change is approved, the contractor
may implement and monitor the status of the
change. Class I changes which do not receive
government concurrence may be submitted as
Class I changes.

10.4 CONFIGURATION STATUS AC-
COUNTING

Configuration status accounting is the mana-
gement information system that provides

Chapter 10 Software Configuration Management

————
QCWG

TECHNICAL, COST
SCHEDULE IMPACT

REVIEW
I &
EVALUATE

o
<CHANGE .l
N

CtAss|

¢

— _— / CLASS =]

CCB REVIEW
(DEVELOPER)

[

i

&
v

1

o

/ CLASS i

CONCURRENCE

T

GENERATE
IMPLEMENTATION
PLAN

PRELIMINARY
DOCUMENTATION

% MODIFY
CONTRACT

PREPARE
FORMAL ECP

‘ PREPARE

———

- ccs
QSAPPROVAL -t (GOVDJ - APPROVAL AL)~

WT

MONITOR/RECORD
IMPLEMENTATION
STATUS

Fig. 10-8 Change Control Process

traceability of changes to configuration
baselines and facilitates the effective im-
plementation of changes. It consists of reports
and records documenting CSCI change ac-
tions. The basic documentation includes the
Configuration Identification Index and Status
Accounting Report. DOD-STD-2167A
provides specific guidance for the status ac-
counting of software, MIL-STD-482A stand-
ardizes data elements with regard to format,
frequency, and record keeping [2].

10.4.1 Software Development Library

The contractor’s Software Development
Library (SDL) is defined in DOD-STD-
2167A as a controlled collection of software,
documentation, and associated tools and pro-
cedures used to facilitate the orderly develop-

ment and subsequent support of software. An
SDL provides storage of, and controlled ac-
cess to, software and documentation in
human-readable form, machine-readable
form, or both. It also ensures compliance with
process procedures. It serves as the
contractor’s single point of configuration con-
trol during all phases of a contract. The SDL
maintains established project baselines, and
monitors and controls the project develop-
ment configuration baselines and data
products. Software products consist of
documentation and listings, source code, ex-
ecutable (machine) code, and status records.
The SDL responsibilities consist of:

(a) Establishing technical configuration con-
trol and monitoring the quality of software
products;

10-10

(b) Maintaining organizational facilities for
baselining and controlling the content of
software products;

(c) Establishing reporting procedures for
resolving software design or implementation
issues and documenting the contents of the
library’s data products [5].

(d) Serving as the repository for test software
and maintaining configuration control of
software testing.

The SDL librarian stores the completed
software products. This includes listings of
tested functions, development folders as-
sociated with the function, and functional test
results. He or she also maintains current list-
ings and copies of products under develop-
ment, updates them as required, tracks the
functions to produce a historical development
record, and controls the distribution of copies
to appropriate personnel. The librarian en-
sures compliance with contractual design
guidelines and maintains completed software
development folders. As recorder for the
SCRB, the SDL librarian schedules and coor-
dinates the SCRB meetings and reviews the
SPRstoinsure that these reports are ready for
discussion at the SCRB. The librarian tracks,
monitors, and records the status of action
items assigned to the SPRs, and prepares and
distributes the minutes of SCRB meetings.

10.4.2 Software Development Folder

A Software Development Folder (SDF) is
defined in DOD-STD-2167A as a repository
for a collection of material pertinent to the
development configuration. The contents of
the SDF typically include (either directly or
by reference) design considerations and con-
straints, design documentation and data,
schedules and status information, test re-
quirements, test cases, test procedures, and

Chapter 10 Software Configuration Management

test results. The contractor documents the
development of each CSU, CSC, and CSCl in
SDFs. The SDFs constitute the first line of
configuration management. The Configura-
tion Manager is responsible for their content
and completeness although this responsibility
is typically delegated to the Lead Programmer
or the project leader of a particular software
effort. The role of CM is to ensure that the
SDFs are complete before they are formally
accepted into the SDL and baselined. This
step is crucial. Many lower level functions are
tested and validated through the use of the
SDFs. The SDFs are maintained for the dura-
tion of the contract and will be made available
for government review upon request.

10.5 CONFIGURATION AUDITS

The fourth function of government configura-
tion management is to perform a set of con-
figuration audits to verify that the selected
configuration items conform to the specifica-
tions and related technical data. There are
two types of audits conducted: a Functional
Configuration Audit (FCA) and a Physical
Configuration Audit (PCA). The details of
these audits are described in MIL-STD-
1521B, Technical Reviews and Audits for Sys-
tems, Equipments, and Computer Software.

The software FCA is a formal examination of
the functional characteristics of a CSCI prior
to acceptance to verify that the CSCI has
achieved the performance specified in its
Software Requirements Specification (SRS)
and Interface Requirements Specification
(IRS). Other technical documentation such
as the Software Test Plan (STP), the Software
Test Descriptions (STD), the Software Test
Reports (STR), and minutes of the design
reviews are evaluated for completeness. The
FCA validates the development of a CSCI has
been satisfactorily completed and that the
CSCI performs as defined in the contract.

10-11

Chapter 10 Software Configuration Management

The PCA is a formal examination of the "as-
built" version of the CSCI as described 1n the
Software Product Specification (SPS). The
source code for each CSCI is compared with
the associated documentation (SRS, IRS,
software design documents, Interface Design
Documents, and Version Description Docu-
ments) for accuracy and completeness. The
PCA establishes the product baseline for each
CSCI and may occur prior to hardware and
software system integration and testing.
However, system level PCAs are often
delayed until after system integration and
testing is completed. The PCA also verifies
that the tested object code can be recreated
or compiled from the baselined source code.

A word of caution should be noted in per-
forming FCA/PCAs. In a highly integrated
hardware and software effort, it is normally
impossible to completely prove compliance
with the requirements without integrating the
two entities and validating their combined
performance at the system level. So it may not
make sense to perform a FCA/PCA on a
software CSCI prior to the completion of all
the DT&E testing. This approach forces a
tremendous load on the goverrment and con-
tractor reviewers but may be the only way to
accurately demonstrate compliance with all
the requirements and to document all the
discrepancies remaining before the govern-
ment will accept the tested article.

10.7 SUMMARY

Configuration management is essential to the
development of mission critical computer
resources. It provides needed program
visibility and allows for the control of the
software requirements, design, and final
product in an orderly and logical manner. It
also provides and audit trail and defines the
limits imposed on and by the contractor
during the development of a software

product. Configuration management is espe-
cially important for software since the physi-
cal and functional characteristics of software
cannot be assessed by visual inspection like
hardware [6]. Embracing the configuration
management discipline means making a con-
tinuous, firm commitment to tracking status
of information that is constantly changing [7].
Without the structure of a sound software
configuration management program, the
development of complex software systems
would be nearly impossible. Sound configura-
tion management is extremely important for
life cycle support of software.

10.8 REFERENCES

1. College Dictionary, Random House Inc.,
New York, NY, 1968.

2. "Configuration Management," System En-
gineering Management Guide, Defense Sys-
tems Management College, Ft. Belvoir, VA,
October 1986.

3. DOD Directive 5010.19, Configuration
Muanagement, 1 May 1979.

4. Bersoff, Edward H., Software Configuration
Management, An Investment in Product In-
tegrity, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1980.

S. Buckle, J. K., Software Configuration
Muanagement, McMillan Press, Ltd., 1982,

6. Ferens, Daniel V. Mission Critical Com-
puter Software Support Management, Air
Force Institute of Technology, School of Sys-
tems and Logistics, Wright-Patterson AFB,
OH, First Edition, May 1987.

7. Evans, Michael W., Software Quulity As-
surance and Management, John Wiley and
Sons, 1987,

10-12

CHAPTER 11

Chapter 11 Independent Yerificatior and Validation

INDEPENDENT

VERIFICATION AND VALIDATION

11.1 BACKGROUND

Independent Verification and Validation
(IV&V) of software was born during the early
days of the space and missile programs. Both
NASA and the military realized that software
developed for spacecraft and missiles Lad to
perform correctly the first time. For example,
if the software did not perform as required
during the launch phase of a missile, there
were no second chances. Software failures
usually meant the loss of the mission, the
launch vehicle, and, if the mission was
manned, the personnel on board.

Because of the importance and criticality of
spacecraft software, money and time were set
aside for an independent organization or con-
tractor, other than the software developer, to
perform several functions:

(a) Independently test the performance of the
developed software;

11-1

(b) Ascertain that the developed software
satisfied all of the system level requirements;

(c) Independently develop a separate
software package for those functions deemed
to be critical to the success of the mission.

This type of IV&V effort did not come cheap!
A full blown IV&V effort could sometimes
exceed 50 percent of the software develop-
ment cost [1]. The criticality of the missions,
however, justified these kinds of expendi-
tures. The same was not true when the IV&V
philosophy was introduced into non-missile
weapon system programs. Many programs
failed to tailor the IV&V approach of the
space and missile programs to the require-
ments of their own programs. Much of the
software developed for aircraft, tanks, and
ships could be classified as non-critical. This
meant that many software failures had no im-

Chapter 11 Independent Verification and Validation

pact on critical subsystems and had no effect surance tool, IV&V must complement and
on crew safety. For example, a failure in a reinforce the contractor’s software engineer-
built-in-test (BIT) or other diagnostic on-line ing process, configuration management, and
subsystem, usually did not have any bearing qualificatiun test functions [1].
onthesuccess orsafety of a particular mission.
Likewise, failure in a piece of automatic test Before discussing the scope and usefulness of
equipment (ATE) or in a data reduction pro- an IV&V effort, it will be useful to define
gram was not catastrophic. Unfortunately, some terms.
large amounts of program funds were need-
lessly spent in the IV&V of non-critical or 11.2 VSRIFICATION
secondary software. This has resulted in two
schools of thought. One school feels that Verification is Computer Software Con-
software IV&V is an unnecessary expense for figuration Item (CSCI) oriented. As il-
most weapon systems while the other school lustrated in Figure 11-1, it is the iterative
feels that IV&V should be performed on all process of determining whether the product
software developments. Neither is entirely of selected steps of the CSCI development
true! Software IV&V is indeed an important process fulfills the requirements levied by
aspect of developing quality software, but it previous steps. Specific task areas that make
has to be focused on those areas that are up the CSClI verification process include:
critical to the success or safety of a mission.

(a) Systems engineering analytical activities
Although IV&YV is an effective management carried out to ensure that the Software Re-
tool in developing quality software, caution quirements Specification (SRS) reflects the
must be taken in placing too much emphasis requirements allocated from the System
on it. IV&V never alleviates the prime Specification;
contractor’s responsibility for mission suc-

cess, system safety, or other quality assurance (b) Design evaluation activities carried out to
practices. To be an effective quality as- ensure that the CSCI design continues to
CONCEPT ! DEM/ FULL-SCALE PRODY
EXPLORATION i VAL DEVELOPMENT SUPPORT
STATEMENT I SOFTWARE
| SYSTEM SOFTWARE INTEGRATED OPERATIONAL
OF REQMNTS DESIGN csct
k NEED SPEC SPEC DOG SYSTEM SYSTEM
VAL VER VER VER

P |

SYSTEM DT&E VALIDATION

OT&E CERTIFICATION

Fig. 11-1 Verification/Validation/Certification

11-2

meet the requirements of the SRS as the
design proceeds to greater levels of detail
(design verification);

(c) Informal testing of the CSCI and its com-
ponents carried out by the developer to assist
in development, provide visibility of progress,
and prepare for formal testing (computer pro-
gram verification);

(d) Formal testing of the CSCI (Formal
Qualification Test [FQT]) carried out by the
developer in accordance with government ap-
proved test plans and procedures to verify that
the CSCI fulfills the requirements of the SRS
and to provide the basis for CSCI acceptance
by the government [1].

11.3 VALIDATION

Validation is system oriented. It comprises
those evaluation, integration, and test ac-
tivities carried out at the system level to en-
sure that the system that is finally developed
satisfies the requirements of the System
Specification. Specific validation tasks in-
clude:

(a) Systems engineering activities carried out
to ensure that the requirements in the system
specification accurately respond to the opera-
tional needs called for in the Statement of
Need (SON);

(b) CSCI integration activities carried out to
assemble and check out previously qualified
CSClIs as a fully functioning system;

(c) The software aspects of system validation
carried out during System Developmental
Test & Evaluation (DT&E) and Operational
Test and Evaluation (OT&E) to demonstrate
that the completed system meets the require-
ments called for in the system specification
(validating the system).

11-3

Chapter 11 Independent Verification and Validation

11.4 CERTIFICATION

Certification refers to the using command’s
agreement, at the conclusion of OT&E, that
the acquired system satisfies its intended
operational mission. During OT&E the sys-
tem undergoes test and evaluation aimed at
assuring operational effectiveness and
suitability under operational conditions [2].

11.§ THE IV&YV PROCESS

AFSC/AFLCP 800-5, Software Independent
Verification and Validation (IV&V), Draft [2)
is an excellent source of information on how
to:

(a) Determine the need for IV&V
(b) Establish the scope of IV&V
(c) Define the IV&V tasks

(d) Estimate software IV&V cost
(e) Select IV&V agent,

Since this document already addresses these
issues, this section will briefly summarize the
contents of AFSC/AFLCP 800-5.

11.5.1 Determining the Need for IV&Y

Before establishing a software IV&V pro-
gram it is necessary to determine whether the
system being considered warrants an IV&V
effort. This determination should be made
during the system Demonstration/Validation
phase by identifying and examining software
requirements. The identification and ex-
amination of requirements should be a by-
product of the System/Segment Specification
(SSS) and the preliminary Software Require-
ments Specification (SRS). The require-
ments within each CSCI should be assessed to

Chapter 11 independent Verification and Validation

determine if an undetected error has the
potential for causing death or personnel in-
jury, mission failure, or catastrophic equip-
ment loss. A determination should be made
to see if any of the software development
effort is to be considered medium to high risk
due to technical reasons (i.e., complexity,
state-of-the-art, system integration, maturity
of tools). The CSCls that meet any of these
criteria should be supplemented with an
IV&V effort. In addition, the software safety
analysis performed as specified in MIL-STD-
882 may also determine the need for IV&V.

11.5.2 Establishing the Scope of IV&YV

The IV&V effort should be tailored so that it
is commensurate with the level of criticality of
the software being developed. After deter-
mining the need for IV&YV, its scope can be
established by performing a criticality analysis
of the software. This analysis should be done
at the CSCl level using the SRS and Interface
Requirements Specification (IRS). In many
cases, this level of detail is not always avail-
able prior to the FSD contract. Inthese cases,
the analysis can be performed at the SSS level.

of effort type contract until the effort can be
better defined.

Regardless of whether one uses the SSS or
SRS, the test for criticality of software re-
quirements is performed using the following
six-step procedure (See AFSC/AFLCP 800-5
for detailed information):

(a) List the software requirements;

(b) Identify the potential impact of un-
detected software errors or faults on the
software requirements;

(c) Estimate the probability of occurrence for
each error;

(d) Calculate the criticality value of the re-
quirements as shown in Table 11-1 (See
ASFC/AFLCP 800-5 for details);

(e) Calculate the overall criticality value for
the system or for each CSCI.

(f) Select the appropriate level of IV&V
based on system’s/CSCI’s criticality value.

PROBABILITY IMPACT CATEGORIES
OF
OCCURENCE CATASTROPHIC CRITICAL MARGINAL NEGLIGIBLE
Frequent 12 g 8 3
Probable 8 5 4 2
Improbable 4 3 2 1
Impossible 0 0 0 0

Table 11-1 Requirement Criticality Values

Unfortunately, this may lead to an overall
IV&V effort that is too detailed for some
CSCls or not detailed enough for others. The
program manager can partially deal with this
problem by placing the IV&V agent on alevel

11-4

11.5.3 Defining the IV&YV Tasks

Once the criticality values are calculated the
appropriate level of IV&V can be selected as
shown below:

Criticality Appropriate
Value IV&YV Level
6-12 I
3-6 11
2-3 111
0-2 None-III

The three levels of IV&YV tasks include
various tasks that grow in scope and com-
plexity as you progress from one level to the
next. The IV&YV levels are defined as:

Level IH

(a) Evaluation of software documentation;
(b) Participationin milestone reviews and for-
mal qualification testing, evaluation of test

plans;

(c) Identification of critical requirements and
design issues;

(d) Monitoring the development process and
providing technical consultation;

(e) Evaluation of critical test results;

(f) Performing selected audits.

Level 11

Same tasks as Level III plus the following:
(a) Analysis of selected critical functions;
(b) Spot checking design performance;
(c) Independently testing critical code;
(d) Analysis of developer’s test results;

(e) Independent evaluation of all software
problem reports.

11-5

Chapter 11 Independent Verification and Validation

Level I
Same tasks as level II plus the following:

(a) Structural and functional analysis of re-
quirements, design, and code;

(b) Propose alternative designs for critical
design areas;

(c) Redevelop key code;

(d) Conduct special test in critical areas
beyond contractor’s formal qualification tests
(i.e., stress testing, simulations).

Each IV&YV level is progressively more
detailed and comprehensive than the pre-
vious level. The realism of the criticality
values depend on the experience level and
background of the people performing the
analysis. To select the scope of IV&V and to
ensure that its results are not biased, someone
other than the software developer or the
potential IV&V agent should perform the
analysis.

It is important to note that IV&V involves
activities over the entire software life cycle
and that it is more than just another software
test activity. Too often the majority of the
IV&V effort doesn’t start until the software is
in the test phase when problems become
more visible. Waiting until testing to identify
and remove problems loses most of the
benefits associated with IV& V.

The tasks performed by the IV&V agent can
vary greatly in terms of the costs versus the
benefit gained by the government. The pro-
gram office ..". "uld make provisions to ter-
minate an IV&V task when its cost exceeds its
benefit. The program office should establish
criteria and/or thresholds for terminating
IV&V support. If the IV&V agent is the sup-

Chapter 11 Independent Verification and Validation

porting command for example, program
management responsibility transfer might be
chosen as the termination point. If the IV&Y
contractor is for level lII tasks, then comple-
tion of reviews on the operations and main-
tenance manuals may be the termination
criteria. A termination clause for an IV&V
effort should be included in all IV&V con-
tracts or tasking documents.

11.5.4 Estimating Software IV&YV Costs

There are no magic formulas to help predict
IV&V costs. IV&V cost estimating requires
a thorough understanding of the system
software and sound judgment. This section
provides some simple guidelines to follow
when estimating IV&V costs. These
guidelines are based on historical trend data
and past experience.

In general, the cost of software IV&V can
range from 10 to 50 percent of the cost of
developing the software depending on the
IV&V level selected [1]. The majority of
IV&V programs are usually at the lower end
of this cost range. Figure 11-2 graphically
depicts the relationship between the IV&V
level and cost as a percentage of software

Percent of CSCI
0.55 | Development Cost
0.50

0.45
0.40
0.35
0.30
0.25
0.20

- B OO0 < @< -

0.15 !
o.1o§
0.05 |

!
0t (T T T T T T
7 8 9 10 11 12 13 14

RITICALITY VALUE

(I I
1.2 3 4 5
Csci

Fig. 11-2 IV&Y Costs Vs. Criticality Values

I
6
Cc

11-6

development cost. From this figure and the
software’s criticality value, the IV&YV cost as
a percentage of the total software or CSCI’s
development cost can be estimated. These
estimates may be on the high side because
they were taken from programs that did not
use DOD-STD-2167A, Defense System
Software Development or MIL-STD-1815A,
Ada Programming Language. Use of these
two standards should decrease IV&V costs.
Both standards increase the engineering dis-
cipline in the software development process
and this improves software quality and makes
the IV&YV effort easier.

The above guidelines assume that the
software development cost has been correctly
estimated and accurately defined in terms of:

(a) Size (lines of code);

(b) Complexity;

(¢) Volatility of requirements;
(d) Programming language;

(e) Quality of existing software and documen-
tation (when modifying or using existing
software);

(g) Maturity of system software and develop-
ment tools.

Variations in any of these factors can impact
software development cost and subsequent
IV&V cost. Before attempting to estimate
IV&V cost, it is very important to have a
thorough understanding of the software re-
quirements.

IV&YV costs should seldom, if ever, exceed 50
percent of the software development cost.
Above the 50 percent level, it means that one
expects software failures to have catastrophic

effects on the program and that such failures
are highly likely to occur. If this is the case, it
probably means that the application is beyond
the state-of-the-art or at the very least on the
leading edge of technology and may not be
ready to proceed into full scale development.

11.5.5 Selecting IV&V Agent

Selecting an IV&V agent is the responsibility
of the program office. The agent selected
must be autonomous from the software
developer. The IV&V agent may be a part of
the prime’s organization but must report to a
level above the head of the software develop-
ment team (similar to any contractor’s quality
assurance organization). However, there can
be significant benefits from using the software
support activity (SSA) as the IV&V agent.
This gives the SSA a vested interest in the
software development since they must sup-
port the system after system delivery.

The following guidelines should help in
selecting the best qualified IV&V source:

(a) IV&YV Experience - IV& V involves the use
of specialized techniques performed by highly
skilled personnel for detecting errors not
usually found by the software developer.
Therefore, one of the most important
qualifications of a potential IV&V agent is
experience. The IV&V agent must have a
strong background in the latest IV&V techni-
ques and have a successful track record. A
large amount of IV&V experience gives the
IV&V agent the intuitive insight into where
problems most likely occur; the ability to
quickly recognize problem areas and pit falls;
expeditiously recommend sound solutions;
and experience in working harmoniously with
the soft are developer in a pressure filled
environu.ent. It is imperative that the agent’s
IV&V experience be commensurate with the
level of IV&YV desired on that application.

11-7

Chapter 11 independent Verlification and Validation

One does not want an IV&V agent working
on a level 1 IV&V effort whose entire ex-
perience is limited to level IIl IV&V.

(b) Application Experience - The IV&V agent
must have experience in developing or per-
forming IV&V onsimilar type systems and be
qualified in the technology area under
development;

(c) Personnel Experience - The management
and technical personnel must have a strong
IV&V background on similar programs and
be proficient in using their company’s IV&V
tools. In addition, they must also have
detailed knowledge of similar systems and the
technology areas being developed,;

(d) IV&YV Tool Library - The IV&YV agent
should have IV&YV tools that are appropriate
for the specified IV&YV level. These tocls
should have been regularly used in the past
and not require inordinately specialized
talent to use. The existence of a large tool
library is of little value if the tools cannot be
easily used or the IV&V agent is not
thoroughly familiar with their use and limita-
tions.

To determine the qualifications of an IV&V
agent the program manager has two options.
First, review the agent’s past performance on
similar applications. Second, perform a
software capability/capacity review on the
IV&YV agent as described in Chapter 8.

11.6 REFERENCES

1. AFSC/AFLCP 800-S, Software Independent
Verification and Validation (IV&V), 1988.

2. ESD-TR-326, Software Acquisition
Management Guidebook: Validation and
Certification, Electronic Systems Division,
Hanscomb AFB, MA, August 1977.

CHAPTER 12

Chapter 12 Moetrics

METRICS

12.1 INTRODUCTION

This chapter deals with the mechanics of
measuring the progress of a software develop-
ment effort. The material is addressed from
a top level perspective and is typical of the
data that is usually presented to a program
manager. Because the data will be summary
level data, additional data at the next level of
detail may be required to support a thorovgh
review. The software manager should have
more details and ready access to the
contractor’s data. To receive metrics data re-
quires that this requiremcnt be clearly called
out in the contract. Itis important to examine
the contractor’s process to determine what
data is available und to use the contractor’s
system as much as possible. The government
should refrain from imiposing unnecessary re-
quirements on a software developer such as
too many metrics, frequent reporting periods,
or peculiar data formats. If the data is not
available, it may indicate a weakness in the
contractor’s ability to properly manage
software development and to provide
progress visibility to the program office.

12-1

12.2 TYPES OF METRICS

There are many different software metrics
available but few of them are proven.
Software metrics are still in various stages of
development so their utility, timeliness and
cost will differ greatly. Metrics, however, can
be used for timely and realistic adjustments to
the software development process in order to
balance cost, schedule and performance ob-
jectives. In addition, metrics help assure the
delivery of a product which will satisfy the
user’s needs and which may be more easily
and economically supported and evolved.

Software metrics may be divided into three
areas: management metrics, quality metrics
and process metrics.

12.2.1 Management Metrics
These metrics are primarily concerned with

indicators which help determine progress
against plan. The indicators are selected from

Chapter 12 Metrics

drivers which have an impact on the required
effort. Cost estimating models are used to
relate the drivers to effort, cost and schedule.
In addition to these drivers, a set of product
progress indicators are selected to help deter-
mine the impact of changes in the drivers to
product progress and as more direct in-
dicators of program progress. The trends in
these indicators support forecasts of future
progress, early trouble detection and realism
in plan adjustments. Management metrics
have been applied effectively to programs at
several system commands over the past five
years.

12.2.2 Quality Metrics

These metrics are primarily concerned with
product attributes which affect performance,
user satisfaction, supportability, and ease of
change. Examples of quality metric indicators
are error density, reliability, expandability,
and portability. Although reliability and error
density metrics have been in use for some
time, more development in the quality
metrics’ area is required to relate these
metrics to program success. A number of
design and analysis tools which support the
use of quality indicators are emerging in this
area. Two tools which are useful to Ada
software development programs are the Ada
Test and Verification System (ATVS),
developed by the Rome Air Development
Center and the Ada Measurement and
Analysis Tool (ADAMAT), developed by the
Dynamics Research Corp.

The costs of applying quality metrics are
generally higher than those for management
metrics.

12.2.3 Process Metrics

These metrics are concerned with those in-
dicators that deal with organizations, tools,

12-2

techniques and procedures and are used to
develop and deliver the software products.
Good examples of process indicators are con-
tained in the Software Engineering Institute’s
(SEI’s) contractor capability assessment
questionnaire and ASD Pamphlet 800-5,
Software Development Capability and
Capacity Review [1]. Process metrics may pro-
vide earlier indications of difficulty and the
need for remedial action. They may provide
the only rich source of feedback for process
improvement. More effort, however, is re-
quired on the definition of process indicators
and the relationship of the process to program
success. A number of activities at the SEI are
underway in this area.

The costs of applying process metrics are also
generally higher than those for management
metrics. The rest of this chapter primarily
addresses management metrics.

12.3 METRICS APPLICATION

Uncertainties and pressures for change exist
throughout all phases of the acquisition
process. Change in the acquisition process is
inevitable as development proceeds and re-
quirements become better defined; as cost,
performance and schedule estimates are
refined; and as personnel, machine, test and
supportresource requirements are identified.

To support these adjustments, indicators of
actual versus planned progress are useful.
However, the Full Scale Development (FSD)
activities appear to be the most appropriate
ones for application of management metrics.
The degree of definition, the data availability,
and the criticality of decisions during these
activities is consistent with a vigorous meas-
urement program. The Concept Exploration
(CE) and Demonstration/Validation (D/V)
activities should provide good insights into
remaining risks and uncertainties. These ac-

tivities also provide useful information for
tailoring FSD Request for Proposal (RFP)
requirements for metrics data and analysis,
and for source selection criteria and weight-
ings.

12.3.1 Pre-Solicitation

The risks in requirements definition, design,
resource requirements and technology ap-
plicationshould be defined during the CE and
D/V activities leading to RFP preparation and
source selection for FSD. The likely areas of
uncertainty should be identified sufficiently
to provide some basis for tailoring the RFP
and source selection criteria. The tailoring
should reflect the type of data input and the
processing and analysis required for the
specific project. If the early activities are shor-
tened or eliminated as may be the case for
Non-Developmental Item (NDI) systems or
systems where few of a kind are being
procured, tailoring of the data requirements
may be more difficult and changes in data
needs, processing and analysis should be ex-
pected. A larger set of data inputs may initially
be required.

The measures called out in the RFP will
generaily be a broader set than required for
the project after the source selection and
negotiation activities have been completed.
The information gathered during these ac-
tivities on development approach, risk assess-
ment & nd contractor process maturity will be
used to tailor the data collection and analysis
to the particular contractor’s capability and
resources.

The efforts prior to the completion of the FSD
solicitation package should be geared towards
refining the scope of the project in terms of
scrubbed requirements, realistic baselines, an
independent cost and schedule estimate, and
arisk reduction plan. The government should

Chapter 12 Metrics

establish an appropriate base and strategy for
contractor selection and generate a plan for
the application of management metrics.

12.3.2 Government Model

The government must have some set of es-
timating relationships, historical data or es-
timating model to develop an independent
cost and schedule estimate. The independent
estimates are necessary to bring realism into
the source selection process and for the
negotiation of contract award. A database to
support generation of estimates and to update
cost estimating relationships and model
parameters should be maintained by the sys-
tem commands. The collection of data should
be done in such a manner that the use of data
across projects is facilitated and the results are
meaningful. The use of the database, model,
and estimating relationships carry over to sup-
port of the monitoring activities which take
place after contract award. The historical ex-
perience may be used to set thresholds for
review and assess the realism of plan adjust-
ments.

12.3.3 Resource Needs

The cost of tracking software development
status through use of management metrics is
a function of the size and complexity of the
software development, the previous ex-
perience of the contractor and government
with the problem domain, and the maturity of
the contractor’s software development
process. Management metric data needs to be
provided by the contractor and processed and
analyzed by both the contractor and the
government. The contractor needs the data to
understand his own progress and to adjust his
plans and application of resources as well as
to report meaningful progress to the govern-
ment. Although the contractor should per-
form the bulk of the analysis and reporting,

Chapter 12 Metrics

experience has shown that the government
must have access to the basic data and some
capability to independently analyze and
present progress results.

The largest potential driver of government
effort is the level of maturity of the selected
contractor’s software development process. A
contractor at low maturity levels will not have
awell-defined process, progress will be more
difficult to determine, and generally meaning-
fu! measures of progress will not be available
until later in the development cycle. The ap-
plication of metrics will more certainly be an
additional activity, and existing process and
analysis tools will be rudimentary or ad hoc.
The contractor’s ability to provide analyses to
support government needs for program status
information will be limited. If metric’s ap-
plication is to be useful, the requirements for
government efforts will increase. Unless
there is some process definition and some
basis for in-process measurement, the use of
after-the-fact product measures may be the
only practical approach. Provisions for in-
creased effort and schedule to support rework
likely will be required.

The required government level of effort to
monitor management metrics for program
with 50-250 thousand lines of source code has
generally been between 1 to 3 man years per
year. As quality and process metrics’ applica-
tions grow, the level of effort may increase by
I to 2 man years per year. However, as
software contractors’ software development
processes mature, the type of measures will
change and their utility will increase. The re-
quired government effort may then decrease
and become more of an audit function that
checks to see that the contractor is following
his detined process.

The government requires personnel skilled in
software engineering and development to

make best use of the metrics’ application. If a
Program Office does not have this capability
in house, support could be provided through
Systems Engineering and Technical Assis-
tance (SETA) or IV&V contractors. Ex-
perience at the Naval Underwater Systems
Center (NUSC) has shown that a core group
of metrics knowledgeable personnel who look
across programs are a valuable asset to the
system command and its program offices.
They have the cap~“ility to build or adapt
analysis tools, maintain a data base for histori-
cal comparisons, tailor the data needs to the
particular project, and evolve the set of
metrics to better serve the command.

The contractor level of effort for applying
management metrics has varied from 1to S
man years per year. A number of other pro-
gram office/contractor activities, such as con-
figuration management, technical
performance monitoring, and cost/perfor-
mance reporting, require data inputs process-
ing and analysis that are similar to the data
input, processing and analysis required to sup-
port the use of management metrics. In addi-
tion to the personnel effort required, analysis
tools and computer resources are also
needed.

The use of management metrics on a program
should be called for in the solicitation pack-
age. The source selection plan shouid include
criteria for evatuating the contractor’s
response.

12.3.4 RFP and SOW

The RFP needs to describe a core set of
measures which attempt to anticipate the per-
tinent parameters and the degree of disag-
gregation (i.e., breakout into critical
components) of these parameters required to
provide good insight into software develop-
ment status and support realistic program ad-

justment. The choice of contractor is not
known at RFP time, and so the core set of
measures must be broad enough to cover dif-
ferent development processes and ap-
proaches, different levels of contractor
maturity and broad sets of possible risks. In
addition, it is difficult to predict ahead of time
how progress will proceed and what questions
may be asked. Experience captured from pre-
vious projects may be used to adjust the core
set of measures to anticipate later needs.

12.3.5 Choice of Measures

Detailed plans for the software development
process are formulated and submitted in the
FSD proposals. Contracts are awarded and
management actions are guided by a set of
plans for the software development process
keyed to a set of assumptions. These assump-
tions include software size and type, person-
nel and machine resources and capabilities,
complexity and criticality of design and per-
formance, and requirements’ certainty and
stability. These drivers and assumptions are
used to estimate cost, schedule and perfor-
mance and to allocate resources. The factors
which significantly affect cost and schedule
generally are those which are identified as the
driving factors in commonly used software
cost estimating models. Keeping track of
these drivers provides good insight into the
likelihood of change in planned progress. It
should also highlight the need for tuning or
adjusting plans to meet program objectives.

12.3.6 Use of Models and Norms

The contractor proposed plans and assump-
tions and the models or historical data which
relate the assumptions to effort are the base
against which progress may be measured
during FSD. During the source selection,
reviews of each contractor’s assumptions and
models will point up risk areas and highlight

Chapter 12 Metrics

data which will be valuable for verifying as-
sumptions and which will be critical for im-
pact analysis. The risk assessments and the
scoring of proposals provide keys to the meas-
urement areas which should receive most em-
phasis and determine the degree of
disaggregation of the data that is required. A
centralized activity for keeping track of data
and cost estimating relationships at each sys-
tems command is recommended to provide
historic data for assessing plan realism and
determining risks as well as updating the data
collection form.

12.3.7 Process Maturity

The use of the SEI process maturity model in
the Software Capability Evaluation (SCE)
provides another source of inputs for tailoring
the data set. The evaluation highlights
strengths and weaknesses of the contractor’s
software development process. This is key to
selecting the metrics and level of disaggrega-
tion. In addition, the maturity level indicates
the degree to which the measures may be
effective and their likely timeliness in deter-
mining status or aiding plan adjustment. The
use of these evaluation techniques also pro-
vide a basis for contractor improvement of the
proposed process.

12.3.8 Negotiation

During negotiation the information gained
from the source selection analysis and evalua-
tion activities are used to adjust contract re-
quirements for collection and analysis of
management metrics.

The key results of the source selection
analysis and evaluation should be used to ad-
just the data set, processing and analysis
whichwill be required of the selected contrac-
tor. The assumptions which support the level
of effort and schedule decisions should be

Chapter 12 Metrics

recorded. The estimating relationships or
models which relate the assumptions to that
effort and schedule should also be recorded
along with the reasons for differences be-
tween assumptions and norms. The
contractor’s proposal, as adjusted by the
negotiation, represents a plan for software
development. By signing the contract, the
government chooses the contractor’s plan for
the software development effort.

The types of measures to be employed and
their degree of disaggregation should be in-
fluenced by the SCE report. The level of
maturity and the strengths and weaknesses
recorded in the report should be used to add
or adjust data requirements. The contractor’s
plan for process improvement in response to
the SCE report should be approved and
provisions for tracking progress should be in-
cluded in the contract.

The risk areas identified during source selec-
tion should be recorded and used to adjust the
data collection and analysis requirements.
Contractor plans for risk reduction should be
approved and provisions for tracking progress
should be included in the contract.

12.3.9 Contract Monitoring

The data on drivers and assumptions should
be monitored periodically to determine
progress against plan and the need for plan
adjustment. Care should be taken to preserve
original baselines and assumptions so that ad-
justed plans do not paint a false picture of
progress history. In addition to the data on
drivers and assumptions, data on product
progress is required to provide more direct
indications of plan status and progress. In-
dicators of design, code and test progress in
the form of hard milestones (rather than per-
centage of planned effort complete) provide
"inchstones" for determining program

12-6

progress. Agreement on definitions of the
hard milestones should be established before
contract award. Much of the data should be
automatically generated by modern con-
figuration management tools. Trends in the
data may be used to forecast future progress
and indicate the realism of proposed plan
adjustments. The extrapolation of the trend
data on actuals generally provides the best
estimate of activity completion.

The measures used for keeping track of
progress are generally interdependent. For
example an increase in software size should
be accompanied with an increase in resources
or a change in schedule. These interdepen-
dencies may be used to assess validity of
reporting and realism of plan adjustments.

The use of management metrics on a number
of system commands programs has proven to
be a valuable aid in detecting early trouble,
adjusting plans realistically and forecasting
future progress. In addition, metrics have
provided a basis for asking more useful and
directed questions about the true status and
well being of the project.

12.3.10 Adjustments and Refinements

Feedback from progress on the effort should
be used to adjust and refine the collection and
analysis requirements. Requirements may be
deleted in areas in which progress is good or
the level of data aggregation may be in-
creased. New requirements for collection and
analysis may be generated as a result of poor
progress, special problems or better under-
standing of the process. Lessons learned
should be passed to future projects.

124 PROGRAM MANAGER’S METRICS

The state -of-practice in software metrics is far
from perfect, but there are a few recom-

« Software Size and Cost Status

« Manpower Application Status

« Costand Schedule Status

» Resource Margins

¢ Quantitative Software Spec Status
« Design and Development Status

» Defects/Faults/Errors/Fixes

« Software Problem Report Status

s Test Program Status

« Delivery Status

Table 12-1 Metrics

mended metrics that are appropriate for all
programs. Metrics are generally relevant only
to an individual program and indicate trends
or alert flags; they are not absolutes. In other
words, a specific value may not describe ab-
solute performance or cost but the collective
data may provide a level of confidence on the
range of performance or cost.

The following material is extracted almost
entirely from the Air Force Systems Com-
mand, Electronics Systems Division and
MITRE document, ESD-TR-88-001,
Software Management Metrics [2]

Table 12-1 lists the metrics that should nor-
mally be available, at least monthly, to the
program manager. The basic method requires
an initial planned estimate as a baseline to
measure progress against. Actuals are then
tracked against the baseline plan and trends
or thresholds are analyzed for progress or
problems.

Although there are other metrics available,
the list in Table 12-1 is an attempt to provide
the program manager with a "Top Ten List."

12.4.1 Software Size and Cost Status
The software size metric tracks the magnitude

of the software development effort while the
cost metric tracks expenditure of resources

12-7

Chapter 12 Metrics

(Figure 12-1). The metrics for each Com-
puter Software Configuration Item (CSCI)
are normally tracked individually. The trend
should be fairly stable, although a deviation
may indicate a better understanding of the
requirements. One should look for an un-
stable baseline, requirements growth, and
poor planning. The software size metric is
generally the input to a cost model such as
COCOMO [3]. Changes in size require more
resources and reflect a change in cost. The
cost model is not shown.

Rules of Thumb for Software Size and Cost
Metrics

(a) Month to month estimates should not vary
by more than 5%. Variation may indicate a
better understanding of the requirements or
problems with the contractor’s development
process.

(b) The costs of developing new code, modify-
ing code, or using existing code differ. Typical
effective weights for source lines of code
(SLOC) are: New code 100%, Modified code
50%, Existing code 10%. It takes about twice
the effort to produce new code as it does to
modify existing code.

(¢) SLOC requirements directly impact man-
power requirements.

THOUSANDS
60 e e e

TOTAL
L] SLOC

! ceeq NEW
120 £ groc
..... MOD

s : L33 s

; REUSED
MR Te’s

TS S S S VO T S S R T (N SAOE S R T
SSR SDR SSR PDOR CDR

Fig. 12-1 Software Size

Chapter 12 Metrics

(d) Tailor the metrics by tracking:

- Equivalent SLOC (weighted);

- Each programming language;

- The metrics for each CSCI separately;
- Object code size.

12.4.2 Manpower Application Status

Tracking planned versus actual manpower
loading provides visibility into future
schedule problems (Figure 12-2). Resources
should be identified as either experienced
personnel and senior personnel, or as inex-
perienced and junior personnel. Tracking los-
ses is also important, particularly if the losses
are in key positions such as the chief program-
mer.

Rules of Thumb for Manpower Metrics
(a) Theratio of total to experienced personnel
should never exceed 6:1. A ratio of 3:1 is

typical.

(b) Initial staffing usually comprises about
25% of total personnel requirements,

(c) The front end should be leveraged with
more experienced personnc.

W PLANNED

800 -
e €23 ACTUAL
TOTAL asan)
600
P
!
E 400
R
S
O 200
N
N o UNPLANNED LOSSES
e L i!.‘ U R B R
Cod T
20 sl
z =
talld [OSSRV TP SR SUPIPE SRS SR N S NPT S
PDR COR TRAR

Fig. 12-2 Software Personnel

(d) The development schedule depends on
the amount of man-months expended:

- Understaffing is an early sign of schedule
slippage;

- If you are behind, you can’t always catch up
by adding more manpower. Adding man-
power may even further delay the overall
schedule;

- Judicious use of overtime may help;

- Additional use of manpower may work but
only for tasks that can be separated or isolated
with simple interfaces;

(e) High turnover or loss of key personnel is
a sign of problems;

(f) Tailor the metrics by tracking the staffing
for each:

- Development task;

- Skill (e.g. Ada, Data Base Management Sys-
tems, Artificial Intelligence);

- Organization (e.g., Software, Quality As-
surance, Test).

12.4.3 Cost and Scheduie Status

Financial reporting provides the status of
work performed and actual cost of work per-
formed versus the plan (Figure 12-3). This is
the traditional Cost/Schedule and Control
System. Typically, the data reported to the
government provides little visibility into the
software development status. This usually oc-
curs because of inadequate definition of the
software Work Breakdown Structure (WBS)
as well as the level of reporting. The WBS
levels must provide reasonable visibility to the
program manager. One way to do this is by

defining a product oriented WBS for the
software.

Rules of Thumb for Cost and Schedule
Metrics

(a) Be alert to variation thresholds exceeding
10%.

(b) Beware of efficiencies that are projected
to improve. Past performance is a measure of
productivity and efficiency and it is very useful

NAVIGATION AND GUIDANCE CSCI
2 MILLIONS OF DOLLARS

.. BCWS
4 oA YOWR
Al AcwP
2 i ‘\\“: """"""""""""""""""""""
o BTN L L L L L L L]
JAN J?JLL I JiNHLﬁdl F J_A‘N H Jl{JL { JA—N i
| 87 | 88 | ag |

TIME IN MONTHS

Fig. 12-3 Software Cost and Schedule

for forecasting estimates to complete. Ef-
ficiencies don’t usually improve that much.

(c) Tailor metrics by tracking:

- Each CSCI,
- Support software development.

12.4.4 Resource Margins

Resources describe the hardware limitations
of the systems. These include Central
Processing Unit (CPU) throughput, memory
size, and input/output channel capacity and
rate (Figure 12-4). Resources can have a
direct impact on software productivity and
design efficiency. The development resource
margins are as important as the target resour-
ces particularly for planning software support.

12-9

Chapter 12 Metrics

Rules of Thumb for Resource Margin
Metrics

(a) CPU utilization should allow for a 50%
margin at delivery (this means that only half
of the resource has been used);

(b) Memory utilization should allow 50%
margin at delivery;

(c) I/O utilization (channels and data rates)
should allow 50% margin at delivery;

(d) For real-time systems, performance and
productivity deteriorates quickly above 70%
utilization;

(e) Consider hardware resource limitations
(e.g. memory addressing as a hardware limit);

(f) Resource utilization tends to increase with
time so plan for expansion;

(g) Schedule and cost "bomb" at 10% margin
(in other words you’ll already have seen an

100 e o e e e
mam CPU
€721 MEMORY
80 - v B
CHANNEL
P
E gpli-
R PLANNED SPARE
E 40
N
T
20 L
o JLUN VR SRS SO GRS VUYL UORDS AU SRS SV SN SRS AU USRI SRPTY SRS IO S |
COR TRR

Fig. 12-4 Computer Resource Margins

exponential rise in the effort required to
squeeze, pare, re-code, fix, etc.);

(h) Tailor metrics by tracking:

Chapter 12 Metrics

- According to architecture (e.g., multiple
CPUs);

- Average and worst case;

- Host and Target equipment;

12.4.5 Quantitative Software Specification
Status

A baseline plan is initially estimated for the
quantity of discrete software requirements to
include both functional requirements and in-

T mm OPEN SAls
60
73 NEW SAls
s
A 40
|
S
20 |-
0

Fig. 12-§ Software Volatility/Action Items

terface requirements. Actual progress is
tracked against the plan. This metric provides
visibility into the progress of the requirements
analysis as well as the growth of the require-
ments in the baseline (Figure 12-5 and 12-6).

Rules of Thumb for Specification Metrics

(a) Each requirement should have a planned
completion date;

2T O SN o
=mm TOTAL
RQMTS
2,000 |- 4400
R = 2oy CUM
£ Vs CHANGES
Q y 2
U 1,500 |- L -{300
A
| 4
R s
E 1,000} N4 1200
M 7
Va
: L
s X0y e 1100
’”
a
Q fl i PV SO SV SR SR Y |) SV S B O | [l._l_i.o
SDR $SA POR COR

Fig. 12-6 Software Volatility/Requirements

(b) Requirements growth, no matter how
small, will impact planned resources and
should be contained from the beginning of the
program;

(¢) Requirements’ uncertainty leads to En-
gineering Change Proposals (ECPs);

(d)Requirements are baselined at the
Software Specification Review (SSR);

(e) If the requirements are not stable by the
Critical Design Review (CDR), the program
is in serious trouble;

(f) Requirements change after CDR will most
probably impact the schedule;

(g) Phase incremental development to allow
the requirements to be revisited before the
next increment’s PDR;

(h) Software action items should not remain
open beyond 60 days.

12.4.6 Design/Development Status

The contractor should describe in the
Software Development Plan the process for
inspections, walkthroughs and internal design
reviews. These events can be tracked to
determine the rate of progress. On a large
project these events can number in the
thousands (Figures 12-7 and 12-8).

200 e
R -‘i’
P
E 450 &
es)
a /
: 7
q 100 /,7
TOTAL
E)/ W caMmTs
M A oy ORIGINAL
E 50 /NS \ oyl M PN
T 71 140 M oy REVISED
S Yy R VY
Lb o it 11 ACTUAL
QL F7% - USSP S SRS S | i PRI} Lt 1 I S |
SRR SOR SSA e (SSA) PDR
J

Fig. 12-7 Design Process

12-10

1,000

i

mm PLANNED

CsUs
GESIGNATED @A ACTUAL
c 800 [, ; d . .
s
U GSUs CODED
" & TESTED
400 r‘ CSUs
- INTEGRATED
200 |-

. &
— b ey SRS N U POV SO I |

° “$oR COR T TRA

Fig, 12-8 Development Progress
Rules of Thumb for Design Metrics

(a) The Software Requirements Specification
(SRS) should be complete before the
Software Specification Review (SSR);

(b) The Software Design Document (SDD)
should be complete before the PDR;

Rules of Thumb for Development Metrics

(a) The CSU design should be complete
before the CDR;

(b) CSC integration and test must be com-
pleted before the Test Readiness Review
(TRR);

(c) Diverging from plan may mean schedule
delays;

(d) Track to cost model (e.g. COCOMO);
(e) Estimated Source Lines of Code (SLOC)
produced per staff month can be categorized
as:

Easy Code 250-500

Moderate Code 100-250

Difficult Code 30-100

(f) Tailor metrics by tracking:

- Each CSCI;

12-11

Chapter 12 Metrics

- Internal reviews of program design lan-
guages (PDLs);

(g) Delaying development to obtain a better
understanding of the requirements is usually
a wise decision. Tradeoffs may be made to
reduce requirements for gains in schedule;

(h) Diverging from the plan means that the
requirements are less understood. You may
not be ready for the SSR;

(i) Tailor the metrics by performing more
detailed tracking, from the SDD to the Com-
puter Software Unit (CSU).

12.4.7 Defects/Faults/Errors/Fixes

Tracking the actual performance of the
process provides some visibility into the
product quality. This is only true if the con-
tractor has a controlled, repeatable process.
Ad Hoc software development is not predict-
able.

A defect is an anomaly in the requirements
and design. A fault is an anomaly in im-
plementation (code). An error is the source
of a fault and a fix is a correction of an error.
Errors and fixes are tracked through the

NEW AND RESOLVED SOFTWARE FAULTS
160 RATE OF DEFECTS/FAULTS

140 . Y

120 | . /'\

« NEWFAULTS

'¢" RESOLVED FAULTS

P
i .
3
0 1:;;“.;;:.;.;.A,.xi;:ngzxxp“.xx::,.:
JAN MAY SEP JUAN MAY SEP JUAN MAY SEP UAN
! 86 i 87 ! 88 |
' DEVELOPMENT TIME

Fig. 12-9 Defects/Faults/Errors/Fixes

Chapter 12 Metrics

Software Problem Reporting system (Figure
12-9)

Rules of Thumb for Defects/Faults/Er-
rors/Fixes/Metrics

(a) Defect/fault/error rates are an early in-
dication of product reliability.

2,500
- wmam PLANNED .

2,000 |- . R / =x3 ACTUAL
T . . .
E 1,500 |
[
T
s 1,000 -

500 |

0 1 1

Fig. 12-10 Test Program Status

(b) The contractor’s process should focus od-
defect prevention and early fault detection.

12.4.8 Test Program Status

The entire test process can be tracked from
planning through detection of errors and cor-
rection (Figure 12-10). Quantitative
measures can start with a requirements and
test cross reference matrix. Progress can also
be measured on planned versus actual tests
performed.

BOO [- c o e e e i e 2B
NEW
SPR
: s
400 Wi OPEN daa p
SPRs]
}{“\ SPR s
R e R
S RS Bt v
p 300 /{ \Q:,s P DENSI 15 P
7 ':‘\\.'-. e 5
R > 2.\’/’/ 1
s // e R
J 10 1
y 0
Q
is 0
3
L
- o]
FRR S .. LS SEDL 7 VR e TR SR Ry S VY P) c
TRR . e (THR) PCA o= (PC4j

Fig. 12-11 Software Problem Reports

12.4.9 Software Problem Reports Status

Software Problem Reports (SPRs) provide
feedback on the correction of errors and are
an indication of product quality (Fig. 12-11)

Rules of Thumb for SPRs

(a) Planning should account for the iterative
and interactive nature of testing;

(b) The number of tests completed should
converge on the number of tests planned,;

(c) Use trends to predict schedule;

(d) Unresolved preblems should decrease to
zero as you approach the TRR and again as
you approach the Physical Configuration
Audit (PCA);

(e) The number of SPRs is anindication of the
testing adequacy and the code quality. Too
many SPRs may indicate poor quality; too few
may mean inadequate testing. It takes a
process change to improve the rate and the
quality. In today’s state of practice a typical
range is S to 30 SPRs per 1000 SLOC.

(f) If the slope of open SPRs is positive then
problems are being found faster than they are
being fixed. If the slope is negative then the
schedule can be predicted.

(g) Tailor the metrics by tracking:

- The number of days SPRs are open (e.g.
0-30, 30- 60, 60-90, over 90);

- Open SPRs by type of software (e.g. applica-
tion, support, test, operating systemy;

- Open SPRs by priority (e.g. critical to opera-
tion, critical for integration, other);

12-12

- SPR density (SPKs per 1000 SLOC in
categories 0-10, 11-20, 21-30, and cver 30).

12.4.10 Delivery Status

A good indicator of progress is to track both
internal and external incremental delivery
status (Figure 12-12). For example, one can
track internal delivery to the test organization
for integration and test and external delivery
to anIV&YV agency. Often, early problems in
a release may be deferred to a later release.
This delay should recognize the shift in
resource requirements. Too many deferrals
can spell disaster.

Rules of Thumb for Delivery Status Metrics

{(a) The number of CSUs per release should
remain stable (within 10%).

(b) Increments or "builds" should
demonstrate useful capabilities as early as
practical.

12.5 SUMMARY

Metrics should provide the program manager
a tool for much greater visibility into the
software development than in the past. The
metrics discussed in this chapter focused
primarily on tracking progress. There are
othertechniquesavailable to monitor product
quality, although these are much harder to

Chapter 12 Metrics

1,000

RELEASE 3 .
RELEASE 2A

RELEASE 1 27 gy ORIGINAL

200 |- " PLAN .

. CURRENT

. 4D | P2 ESTIMATE

0 LL_.L__L N ISR U S O S O S DU SR W
COR

Fig. 12-12 Incremental Release Count

quantify, It is important that the contractor
have the right mechanisms in place for proper
discipline and commitment to quality.

12.6 REFERENCES

1. ASD Pamphlet 800-5, Software Develop-
ment Capability and Capacity Review, HQ
Aeronautical Systems Division, Wright-Pat-
terson AFB, Oh 45433, May 1988.

2. Schultz, Herman P., Software Management
Metrics, Air Force Systems Command,
Electronic Systems Division, Report ESD-
TR-88-001, May 1988.

3. Boehm, Barry W., Software Engineering
Economics, Prentice-Hall, 1981.

CHAPTER 13

Chapter 13 Epllogue

EPILOGUE

13.1 INTRODUCTION

Improvements in software productivity are
coming slowly. Present conventional techni-
ques for software production make use of
libraries of primitive functions or algorithms
(See Figure 13-1). There is little carryover
from past developments. The primary
developmenteffort is in-line with the delivery
of the software product or capabilities and is
dedicated to a single system. There is little
ability to leverage the development invest-
ment and provide products for use on the next
system, The resulting system structure is
typified by many unique modules with com-
plex interfaces requiring significant effort to
integrate, test and maintain.

The communications among the various
players (user, system designer, programmer)
involved in software development, acquisi-
tion, delivery and use is constrained. The con-
straints arise from a number of factors
including geography, personnel availability,
lack of software development tools, procure-

ment and acquisition policy restrictions, and,
the diverse backgrounds and training of the
players. The resulting situation might be
characterized as each player tossing require-
ments, designs, and comments over a wall to
one another. These constrained communica-
tions, and the unique and customized im-
plementations which result from our present
ways of building software, usually require that
the computer programmers play a key role in
the delivery and transition of the system to the
user. In fact, in many systems even the system
designers and the system test group have a
difficult time discovering critical failure
modes and correcting problems economically
when they are discovered. The need to use
the software development organization
during transition is often underestimated,
especially when the software development or-
ganization is not the prime contractor. The
prime usualiy phases out these programmers
and performs the final system test and opera-
tional test and evaluation without them. Un-

Chapter 13 Epilogue

Process R R * * ﬂ*
S . g
e : Program Code Test rd
< User ——1 Design and CPCl Test *'w<< User
e Development System Test “ //
Tools On-Line Developers
Simulators, POL
H:::II roment Configuration Test Support
WyZ:I’S. Managementl Generators Environments
or
Processors Workbench
f R
Showroom System Structure
I T T I T T I — T]
t HOL { Compilers L
§
Math ! Operating L ~~~~~~~ - .
Functions | Systems * * 1]
[suwroutne | 1 | BV -1z _—
Algorith ms J -tine B
L et) LEEET | ovveopes | T |

Fig. 13-1 Conventional Techniques

fortunately, current software development
practice makes it difficult for the prime to
perform these functions adequately.

There may be another way to build software
and overcome some of the drawbacks of our
present techniques. A model of an alternate
software development technique is shown in
Figure 13-2. In this model, showrooms of
larger more capable pieces are developed off-
line for later integration and use in multiple
systems. The in-line activities are, therefore,
more heavily divected towards program in-
tegration than to design and development.
The testing emphasis is more on system test-
ing than code or CSCI testing. Such an ap-
proach may support the use of computer
aided design and manufacturing
(CAL/CAM) for software. The resulting sys-
tem stracture is more regular, has simpler
interfaces and is easier to test. Less in-line

13-2

development is required for the delivery of a
software product or capabilities. This allows
the off-line development effort to support a
larger number of systems.

However, reusing software on multiple sys-
tems is a tough job. How can the performance
and interface of the modules be described?
Howwell can they be tested? What s their run
time? How are they catalogued? Who owns
the data rights? How are they guaranteed?

The technology and the management in-
frastructure needed to fully exploit reusability
is not yet available. Efforts in the STARS
program and at the Software Engineering In-
stitute are investigating the technical and
management advances required to answer
these questions and to bring reusability closer
to practice. In the meantime, greaier use of
best existing practice, tailored acquisition

Chapter 13 Epllogue

Process
PN s ;;; """""" Program Design | | Code Test | T
U 4 & Development
ser ~———1 Design CPCl Test b User
Program
—~ [Integration System Test S
Tools %ﬂneiiveﬁpg
Simulators, PDL
Prototypes, Synthesizers, ' Common
Simulated Automated CAD/CAM Test Support 1
Exercises Catalog On-Line Generators Environments
Formal Spt;cs Function Libraries
Showroom System Structure
R, Ada T
Trackers Packages
TResouce || faalee | R* T
Allocators e —
e — Display
T T Generator
{ o FFT = —
rocessor Message Off-Linne
e Handlers Developers

Fig. 13-2 Reusability

strategies, and improvement of tools and
techniques are required to help manage the
software acquisition process.

13.2 SOFTWARE COST UNCERTAINTIES

Because the current nature of the software
development process is more like model shiop
or custom tailoring than like mass production,
software cost estimating accuracy is a very
strong funiction of the program phase. The
uncertainty in the software development
process is captured in Figure 13-3 [1]. Errors
on the order of 4 to 1 are likely when estimat-
ing software costs at the start of a project.

These early cost estimates require difficult
judgments of complexity. productivity and
size. Fxperience indicates that the curve
should be one-sided because software costs
are never overestimated; they are always an-
derestimated.

13-3

How is it then that most cost estimators adver-
tise techniques which purport to provide 10 to
20% accuracy? Most of these estimates make
use of regression analyses and deal with the
process from the perspective of the right end
of the curve. With present techniques, if you
want better accuracy, you have to do sente-
thing to move toward the greater experience
part of the curve.

This can be done by building prototvpes,
making use of previously designed and
developed products, using commercial off-
the-shelf software, or finding an acquisition
strategy which includes a contract definition
phase or incremental development., A
strategy is needed to delay major fund com-
mitments until better software vequirements
aad impiementation definitions are obtained.

Early suftware cost estimating may be likened
to the story of the old farmer who had aunique

Chapter 13 Epllogue

T \\\
15% |- \’\
Relative \\\\
Cost 1.25x ’\\“Nm
e
Range * N
0.8x |- PRSI
o
0.67x — ./’/
05x |- e
/ //
Product Detailed
Concept of Requirements Design Design Accepted
/ Operation Specifications Specifications Specifications Soitware ‘
0.25x |— {
A A A a A

Fig. 13-3 Software Cost Estimating

way ot estimating the weight of pigs (See Fig-
ure 13-4). "I don’t need any of these new-
fangled scales to do that," he said. He had an
easy way to weigh pigs without scales. He laid
a plank across a pail, put a stone on one end,
a pig on the other, and balanced the plank.
Then he guessed the weight of the stone.
From that he could easily calculate the weight
of the pig--to three significant figures. With
current model shop techniques, one cannot
write better specifications or obtain better
cost estimates without first doing some part of
the job to he specified or estimated.

13.3 SOFTWARE ACQUISITION CYCLE

The ideal acquisition cycle includes a concept
exploration phase, a demonstration/valida-
tion phase, a full scale engineering develop-

ment phase, a production phase and a deploy-
ment phase. In most Command, Control and
Communications (C3) systems acquisitions
and in many non-developmental item (NDI)
acquisitions, the normal weapon life cycle is
compressed (See Figure 13-5) [2]. Although
a concept exploration phase may take place,
the demonstration/validation phase is
generally omitted and the full scale develop-
ment and production phases are combined.
When no demonstration/validation phase is
present, time somehow must be allowed for
definition and detailed design. Many acquisi-
tion schedules call for preliminary design
reviews as soon as three months after contract
award. The contractor is forced to either ac-
complish the top level design in the proposal
phase or in the short time available after
award.

13-4

Chapter 13 Epilogue

Fig. 13-4 Estimating Techniques

The use of top-down design has been recom-
mended as an orderly and disciplined way to
develop and test software. For new programs,
however, one cannot peiform top down
design and development without some
knowledge of the bottom (See Figure 13-6).
One must have some assurance that alloca-
tions of requirements, from one baseline to
the next, will still be valid when the lower level
designs are developed. Historically, most Air
Defense programs have run out of processing
resources as a result of not understanding the
need to carefully sort tracks before attempt-
ing radar data correlation. Prototypes of the
difficult parts help validate requirement al-
locations and avoid breakage and rework.

13.4 PROTOTYPES

Prototypes are useful in two ways. They help
resolve requirements uncertainties by provid-

ing better user insight and lessening the
misunderstanding that arises from just look-
ing at paper requirements and specifications.
They also help reveal implementation dif-
ficulties or constraints.

Prototypes generally make use of special
operating procedures and operating systems
and have limited interfaces and loading. They
have no provisions for startover, continuity of
operation, or maintenance, and use com-
puters and code that are not intended for the
target system. Too often the government uses
the information from the prototype to
generate high level system performance
specifications for competitive bid with a new
set of contractors. Much of the experience
gained fromthe prototype development is lost
inthe process if the prototype developer is not
the winner. With today’s state-of-the-art
software production techniques, it is very dif-

Chapter 13 Epilogue

Idealized Cycle

P — S s I T I T I T st T I LTI
Concept { ’ Demonstration/ Full-Scale . l
“ Explorat’ijon K Validation } l Development l Production } 1 Deployment } 1

| / /

Usual C“Cycle N \Y2
Conce;;t_ o Full-Scale Development/ T
H Exploration l l Production l l Deployment ‘
et A LTI T S I T

Fig. 13-5 System Acquisition Cycle

ficult to convert a developer’s experience into
specifications of sufficient quality to allow
someone else to gain that knowledge and ex-
perience. Unless the original players, both
user and development contractor, remain the
same and the early prototype is very close to
the end item, a second prototype must be
built. Otherwise, some strategy such as in-
cremental development must be used to help

manage the requirements and implementa-
tion uncertainties.

13.5 SCHEDULES AND MANNING

The amount of time the government allows
for design, and the rate at which the contrac-
tor staffs the software development activity,
have a major impact on the success of the

““You can’t do top down
without knowledge
of the bottom”’

A. Roberts

Fig. 13-6 Top-Down Design

13-6

EXPERIENCE

PROPOSED

PBR CDR

Fig. 13-7 Software Manpower Phasing

program. Devenney [3] examined 1f major
acquisition programs at the Electronic Sys-
tems Division (ESD) at Hanscom AFB, Mas-
sachusetts. He found that in every case the
contractor manned up quickly and that the
manning level was constant throughout the
program. The absence of a demonstra-
tion/validation phase and the requirement to
hold PDR in the first few months of the con-
tract forced this manning profile. More than
ten years ago, Roberts [4] suggested a revised
manning profile and model schedule for the
early design activities leading to PDR and
CDR (See Figure 13-7). The intent of this
manning profile is to allow more time for

Chapter 13 Epilogue

design analysis and breadboarding of the dif-
ficult parts of the job and to perform some
work at a level below the level one is attempt-
ing to baseline. This allows for the validation
of the top level design and performance al-
location before building up the development
team. The experience on several ESD
programs indicates that with existing practice
development specifications are not com-
pleted until 10-15 months after contract
award. This is a true measure of the time
needed for validating top level designs (See
Figure 13-8).

Over time the schedule for the PDR has been
been moved up and is now generally six
months after contract award. What do all
those people do while the top level design is
being developed? They start into detailed
design and coding in order to meet schedule.
This premature design and code must often be
redone. The changes and uncertainties lead to
frustration and poor morale for the team.

In updating his COCOMO model for Ada
implications, Barry Boehm has suggested a

SYSTEM A
Software Req. Specs (SRS)
Preliminary Design Review (PDR)
Critical Design Review (COR)
SYSTEM B
SRS
POR
CDR
SYSTEM C
SRS
PDR
CODR

. Planned Completion

Months
4 8 12 16 20
® ||
e N
on
@ B - |
oN
¢ ||
|
oN

Il Actual Completion

Fig. 13-8 Experience Example

13-7

Chapter 13 Epilogue

NUMBER OF PEOPLE
Fig. 13-9 Productivity

schedule similar to the one shown in Figure
13-7. He allows time before the PDR to com-
pile the PDL statements, validate interfaces,
and perform semantic checks. The longer
time produces a more orderly process with
less breakage and rework.

13.6 TEAM SIZE AND MANAGEMENT

Large, complex software jobs often require
hundreds of people. An article [S] by the
people who managed Sidewinder, a very suc-
cessful air-to-air missile, addresses the size
and behavior of research and engineering
teams. It points out that the nature of com-
plex acquisitions is such that the assignment
of too few people may require an infinite time
to complete the job. On the other hand, the
assignment of additional engineering person-
nel above a certain level may not only propor-
tionately reduce total time, but may, in fact,
increase the total time to accomplishment
(See Figure 13-9).

The author of the referenced article recalls
being asked in grade school to solve the fol-
lowing problem: "If two men can dig a well in
eight hours, how long does it take four men to
dig the same well". He "... can recall being
haunted by the suspicion that perhaps there
was only room down the well for two men; in
which case the extra two men might have

some difficulty in usefully contributing". A
similar phenomenon has been reported by
Brooks in The Mythical Man-Month [6].

If tic schedule for a previous job was longer
than dus:red as the result of over-staffing, the
tendency may be to add more people to im-
prove the schedule on the next job. This will
happen if the inter-dependent nature of the
tasks and the over-staffing are not under-
stood. Care must be taken in using past ex-
perience to set objectives for future jobs.

The size job a given organization can handle
is not only a function of the available number
of qualified and experienced personnel, To
some extent, jobs can be balanced with
resources. When the job grows in size, com-
plexity, and interdependence, the developer
must provide appropriate infrastructures (i.e.,
organization and documentation) to support
technical interchange, progress reporting,
and increased span of control (See Figure
13-10). If a large job is broken into pieces to
get it accomplished, a mechanism must be
devised for pulling it back together again.

z

.} Jobs Resources » L
/
/
Infracstructure /
/ Resources / ’
/ /-
’. 15, Me L/ /
S, i
.—/iza“on' Tee ““cs"’roc\'*«. /
an ¢4 u, e
fo o/

Fig. 13-10 Management

Failures often occur when firms take on larger
jobs than they have previously undertaken.
They generally use a small team and face-to-
face communications for coordination and
control. When the number of people grows,

there are no established procedures, tools or
documentation to support the necessary tech-
nical and management interchanges.

13.7 ASSESSING PERFORMANCE

There are a number of new techniques for
assessing a contractor’s experience, tools and
procedures. Visits to contractor facilities by a
team of experienced government software
personnel duri.ig source selections are being
used. The team assesses and verifies contrac-
tor experience, maturity of procedures,
quality management capabilities and job un-
derstanding. At ESD these teams are called
"Greybeards." At the Aeronautical Systems
Division, they are called "Capability/Capacity
Review Teams" (See Chapter 8). Work at the
Software Engineering Institute and at
MITRE Corporation [7] has led to a process
for assessing the software engineering
capability of contractors. At ESD a short
software engineering exercise has been
designed to audit the contractor’s use of
proposed tools and procedures.

In addition, a set of metrics has been
developed for use by the contractor during the
software development process as an aid
visibility and control [8]. A number of con-
tracts now require the use and reporting of
metrics. The cost for this should not be high
since a competent contractor normally
generates metrics for his own internal use.

13.8 MANAGEMENT GUIDANCE

Software development and acquisition is dif-
ficult and will remain so for several years.
Actions are required to overcome the
roadblocks associated with the present
process.

Choose a good contractor. During source
selection use in-plant inspections (Grey-

13-9

Chapter 13 Epilogue

beards), software exercises, and contractor
capability assessment techniques to aid the
selection process. Include the support re-
quirements for these activities in the RFP.

Allow time for design and iteration. Don't
baseline without some experience at lower
levels of design.

Make maximum use of off-the-shelf software,
Try to make the job smaller and more
manageable. Change the requirements for
well defined, less critical functions to fit with
available packages.

Breadboard and prototype the difficult parts
of the job. Prototypes help the user see what
he is getting and help the developer under-
stand implementation difficulties.
Prototypes generally are not suitable for the
end product unless they have been especially
designed for that purpose.

Schedule preliminary design reviews consis-
tent with the degree of validation. Don’t
force contractor top level designs to be ac-
complished in the proposal stage. Allow time
to validate the top level design.

Apply discipline and new tools. Contractors
should have a good software development
plan, established procedures, and tools to aid
development, configuration management,
test generation, and status keeping.

Require metrics for visibility and control.
The contractor should have his own means for
determining status and the rate of progress.
Trends are the basis for predicting future
progress. Impose the requirement to
generate and use metrics on the contractor.

Have more than one phase. Have a place to
put new requirements instead of impacting
ongoing efforts. Use the second phase to deal

Chapter 13 Epilogue

with shortfalls in the first phase. Often the
user no longer wants the capabilities which
were thought desirable early in the process.

Deliver in useful increments. Try to keep the
deliveries consistent with the degree of
knowledge one has developed of require-
ments and implementation difficulties. To
avoid retraining, design user interfaces so that
they don’t change with each increment.

Maintain schedule; deliver, then add. Every
schedule change opens the door to new re-
quirements. Delivery provides performance
feedback--necessary for further evolution.

13.9 REFERENCES

1. Boehm, Barry W., Software Engineering
Economics, Prentice Hall, 1981.

2. Roberts, Alan J., "Some Software Implica-
tions of System Acquisition," Signal Magazine,
July 1982, pages 19-25.

3. Devenney, Capt. Thomas J., "An
Exploratory Study of Software Cost Estimat-

ing at the Electronic Systems Division,"
Masters Thesis, Air Force Institute of Tech-
nology, July 1976.

4, Roberts, Alan J., "ESD System Acquisition
Practices - Design Reviews," The MITRE
Corporation, Internal Memo, May 1977.

5. Kirschner. R. B., "The Size of Research and
Engineering Teams," Proceedings of the 11th
National Conference on the Administration of
Research, Pennsylvania State University
Press, September 1957.

6. Brooks, F. P., The Mythical Man Month,
Addison-Wesley, 1975.

7."A Method for Assessing the Software En-
gineering Capability of Contractors,"
Software Engineering Institute, ESD-TR-87-
186, CMU/SE!-87-TR-23, 23 September
1987.

8. Schultz, Herman P., Software Management
Metrics, ESD-TR-88-011, May 1988.

13-10

APPENDIX A

Appendix A List of Acronyms

LIST OF ACRONYMS

ACVC
ADAMAT
ADP
AFSCP
AFLC
AFB
AFR
AlS
AJPO
AMC
ANSI
APSE
ASCII

ASDP
ATE
ATA
ATF
ATVS
AVF
AVO

BIT
BITE

CAD/CAM

CET
CCB
CDR
CDRL
CE
CLIN

Ada Compiler Validation Capability
Ada Mcasurement & Analysis Tool
Automatic Data Processing

Air Force System Command Pamphlet

Air Force Logistics Command
Air Force Base

Air Force Regulation
Automated Information Systems
Ada Joint Program Office
Army Materiel Command

American National Standards Institute
Ada Programming Support Environment

American Standard Code for Information

Interchange

Acronautical Systems Division Pamphlet

Automatic Test Equipment
Advanced Tactical Aircraft
Advanced Tactical Fighter

Ada Test and Verification System
Ada Validation Facility

Ada Validation Organization

Built-in-test
Built-in-test Equipment

Computer Aided Design/Computer
Aided Manufacturing

Capability Evaluation Team
Configuration Control Board
Critical Design Review

Contract Data Requirements List
Concept Exploration

Contract Linc Item Number

A-1

Cl
CIDS
M
C™MP
CPU
CRISD

CRWG
CsC
CSC1
CSOM
CSU
CRLCMP

CRWG
DARCOM

DCMC
DCP

DID

DOD
DODD
DOD-STD
DSB
DT&E
D/v

ECP

ECR
EPROM
EEPROM
ESD

Configuration Item

Critical Item Development Spec
Configuration Management
Configuration Management Plan
Central Processing Unit

Computer Resources Integrated
Support Document

Computer Resources Working Group
Computer Software Component
Computer Software Configuration ltem
Computer System Operator’s Manual
Computer Software Unit

Computer Resources Life Cycle
Management Plan

Computer Resources Working Group

U.S.Army Material Development &
Readiness Command

Defense Contract Management Command
Decision Coordination Paper

Data Item Description

Department of Defense

Department of Defense Directive
Department of Defense Standard
Defense Science Board
Developmental Test and Evaluation
Demonstration and Validation
Engincering Change Proposal
Embedded Computer Resources
Erasable Programmable ROM
Electrically Erascable PROM
Electronic Systems Division (USAF)

Appendix A List of Acronyms

FAR
FCA
FQR
FQT
FSD
FSM

HOL
HWCI

1C
ICBM
ICS
ICWG
IDD
IEEE

ILSP
INS
/0
10C
IR&D

IRS
ISA
V&Y

JLC

KAPSE

LAN

MCCR
MIL-STD

NCSC
NDI
NIST

Orp
0O&M
OMB
(001))
08D
OT&E
pPC
PCA
PDL
PDR
PDSS
PIDS

Federal Acquisition Regulations
Functional Configuration Audit
Formal Qualification Review
Formal Qualification Test

Full Scale Development
Firmware Support Manual

Higher Order Language
Hardware Configuration Itcm

Integrated Circuit

Inter-Continental Ballistic Missile
Interpretative Computer Simulation
Interface Control Working Group
Interfuce Design Document
Institute of Electrical and Electronics
Engincering

Integrated Logistics Support Plan
Inertial Navigation System
Input/Output

Initial Operating Capability
Independent Research and
Development

Interface Requirement Specification
Instruction Sct Architecture
Independent Verification and
Validation

Joint Logistics Commanders

Kernal Ada Programming Support
Environment

Local Arca Network

Mission Critical Computer Resources
Military Standard

National Computer Sccurity Center
Non-Developmental Item

National Institute of Standards

and Technology

Operational Flight Program
Opcration and Maintenance
Office of Management and Budget
Object Oriented Design

Office of Sceretary of Defense
Operational Test and Evaluation
Personal Computer

Physical Configuration Audit
Program Design Language
Preliminary Design Review
Post-Deployment Software Support
Prime [tem Development Spec

PM
PMD
PMP
PMRT

PO
PROM

QA

RAM
R&D
RF
RFP
ROM

SCM
SCp
SCRB

SDCCR

SDF
SDL
sSbp
SDR
SEI
SIL
SIF
SLOC
SON
SOw
SPD
SPM
SPO
SPR
SPS
SRR
SRS
SSA
SSA
SSAC
SSEB
SSDD
SS8S
SSR
SS8S
STARS

STD
STE
STP
STR
SUM
S/W

Program Manager

Program Management Directive
Program Management Plan
Program Management
Responsibility Transfer

Program Office

Programmable Read Only Memory

Quality Assurance

Random Access Memory
Rescarch and Development
Radio Frequency

Request for Proposal

Rcad Only Memory

System Concept Paper

System Concept Paper

Software Configuration Review
Board

Softwarce Development Capability
Capacity Review

Software Development Folder (File)
Software Development Library
Software Development Plan
System Design Review

Softwarc Engincering Institute
Systems Integration Laboratory
Systems Integration Facility
Source Lines of Code

Statement of Need

Statement of Work

System Program Director
Software Programmer’s Manual
System Program Office

Software Problem Report
Software Product Specification
Systems Requirements Review
Software Requirements Specification
Software Support Aclivity

Source Sclection Authority

Source Sclection Advisory Council
Source Sclection Evaluation Board
System/Segment Design Document
Source Sclection Plan

Software Specification Review
System/Segment Specification
Software Technology for Adaptable Reliable
Syslems

Standard

Special Test Equipment

Software Test Plan

Software Test Report

Software User’s Manual

Software

TADSTAND Tactical Digital Systems Standard

T&E
TEMP
TO
TS
TRR

Test and Evaluation

Test and Evaluation Master Plan
Technical Order

Test Program Sct

Test Readiness Review

A-3

UDF

vDD
VHSIC

WBS

Appendix A List of Acronyms

Unit Development Folder

Version Description Document
Very High Speced Integrated Circuit

Work Breakdown Structure

APPENDIX B

Appendix B Glossary of Terms

GLOSSARY OF TERMS

Address
Specifies the location of word, data or in-
struction in memory.

Allocated Baseline
The development specification which defines
performance requirements for each CSCI,

Analog

Being or relating to a mechanism in which
data is represented by continuously variable
phys.cal quantities [1].

Assembler

A computer program that translates assembly
language instructions into machine language.
Typically one asscribly language instruction
is translated into one corresponding machine
language instruction, Both the assembly and
machine languages are unique to a particular
computer.

Assembly Language
Assembly language allow the use of ab-
breviated names (mnemonics) for machine

language instructions and operands in place
of binary (0s and 1s) machine codes.

Bit
A binary digit whose value is eithera 1 ora (.

Built-in Test Equipment (BITE)

Any device permanently mounted in the
prime equipment and used for the express
purpose of testing the prime equipment,
either independently or in association with
external test equipment.

Byte
Eight (8) bits.

Buss
See Digital Data Buss

Ceniral Processing Unit (CPU)
Fetches, decodes and executes the instruc-
tions of the computer program. The major
determinant of a compe .er’s execution spee-.
Sometimes called the "engine".

Appendix B Glossary of Terms

Compilation or Compiling
The translation process accomplished by a
compiler.

Compiler

A computer program which translates a HOL
into machine language. The HOI. statements
are called source code and the output of the
compiler is called object code.

Component

A Computer Software Component (CSC) is a
distinct part of a computer software con-
figuration item (CSCI). CSCs may be further
decomposed into other CSCs and Computer
Software Units (CSUs).

Computer Program

A series of instructions or statements in a
form acceptable to computer equipment and
designed to cause the execution of an opera-
tion or series of operations. Computer
programs include such items as operating sys-
tems, assemblers, compilers, interpreters,
data management systems, utility programs,
and maintenance or diagnostic programs.
They also include application progra ns such
as payroll, inventory control, operational
flight, strategic, tactical, automatic test, crew
simulator, and engineering analysis progranis.
Computer programs may be either machine-
dependent or machine-independent, and may
be general purpose in nature or designed to
satisfy the requirements of a specialized
process or particular users.

Debugging

The process of locating and eliminating errors
thiat have been shown to exist in a computer
progran,

Digital Data Buss

A group of circuits and interconnections be-
tween two or more devices, such as between
the CPU and memory or between the com-

B-2

puter and external devices, that provide a
communication path for digital data.

Error Message
A message printed out by a computer after
detecting a programming error.

Emulator

A combination of computer programs and
computer hardware that mimic the instruc-
tions and execution speed of another com-
puter or system,

Executive
The operating system in an avionics suite.

Expert Systems
Systems that utilize artificial intelligence (Al)
to perform their functions.

Firmware
Computer programs and data that have been
written into read only memories (ROMs).

Formal Qualification Review (FQR)

A system level configuration audit conducted
after system testing is completed to ensure
that the performance requirements of the sys-
tem specification have been met,

Functional Baseline
The system requirements, Provides basis for
contracting and controlling the system design.

Functional Configuration Audit (FCA)

The formal examination of test data to deter-
mine the functional characteristics of a CSCI,
prior to acceptance, to verify that the item has
achieved the performance specified in its
functional or allocated configuration iden-
tification.

Higher Order Language (HOL)
Higher order languages have been developed
in order to make writing and understanding

programs easier. In a HOL, the program is
written in a series of statements which typical-
ly resemble mathematical formulas or
English expressions.

Host Computer
The computer on which a compiler executes.

Initial Operating Capability (10C)

The first capability attainment to employ ef-
fectively a weapon system, an item of equip-
ment, or system of approved characteristics,
and which is manned or operated by atrained,
equipped, and supported military unit,

Integrated Circuit (IC)

Tiny complex of electronic components and
their connections that is produced in or on a
small slice of material such as silicon [1]. The
basic building blocks of modern electronics.

Intermediate Language

An assembly-like language used by a compiler
as an interim step in the process of compila-
tion.

Interpreter

A computer program that converts and ex-
ecutes a HOL source program statement
directly into machine language, one state-
ment at a time.

Linker

A -~omputer program that links or ties
together programs that have been separately
compiled or assembled.

Loader
The computer program that loads the com-
puter program into memory.

Machine Language

The binary codes (0s and 1s) which are under-
stood directly by a computer. A typical
machine language instruction consists of an

B-3

Appendix B Glossavy of Tarms

operation code {or op-code) and one or more
operand fields. The operation code specifies
the computer function (e.g., add. subtract, test
for zero) to be performed while the operand
fields specify where in the computer the data
for that function is located.

Maintainability

The ability of an item to be rewained in or
restored to specified condition when main-
tenance is performed by personnel having
specified skill levels, using piescribed proce-
dures, resources, and equipment at ecach
prescribed level of maintenance and repair.

Microprocessor

A Central Processing Unit (CPU) con-
structed from one large scale integration
device or chip.

Mod=l

A model is a representation of an actual or
conceptual system that involves mathematics,
logical expressions, or computer simulations
that can be used to predict how the system
might perform or survive under various con-
ditions of in a range of hostile environments.

Module
See Unit

Module Testing

The execution of a single module to deter-
mine its correctness before the module is
combined or integrated with other modules.

Mnemonic

Symbolic names for machine language in-
structions which allow a programmer to
generate programs in assembly language
without having to use binary codes.

Operating System
A computer program that controls the execu-
tion of other computer programs in a com-

Appendix B Gloesary of Terms

puter. It schedules the time when computer
programs are run, assigns memory, and
provides diagnostic and accounting informa-
tion about a program’s execution.

Patching

Making changes to the machine code (object
code) representation of a computer program
and by-passing the compiler.

Regressicn Testing

The testing of u program to confirm that func-
iinns, that were previously performed cotrect-
ly, continue to perform correctly after a
change Las been made.

Rehosting
Modifying a computer program so that it
operates on a different host computer.

Reliability

The probability that an item will perform its
intended function for a specified interval
under stated conditions.

Retargeting
Modifying a compiler so that it generates ob-
ject code for a different target computer.

Simulation

A simulation is a method for implementing a
model. It is the process of conducting experi-
ments with a model to understanding system-
behavior under selected conditions or of
evaluating various system operational
strategies within the limits imposed by
developmental or operational criteria.
Simulation may include the use of analog or
digital devices, laboratory models, or
"testbed" sites.

Simulator

A generic term used to describe a family of
equipment used to represent threat weapon
systems in development testing, operational

B-4

testing and training. A threat simulator has
one or more characteristics which, when
detected by human senses or man-made sen-
sors, provide the appearance of an actual
threat weapon system with a prescribed de-
grec of fidelity.

Software

The combination of computer programs or
instructions required to cause the computer
hardware to perform a certair. task or tasks.

Stub
Astub takes the place of a module that has not
yet been coded or tested.

Syntax
The ruies for writing computer programs in a
particular programming language.

Syntax Error

A syntax error is generated when a program-
mer has violated the rules of a particular
programming language.

Target Computer
The computer for which the compiler
generates object code.

Testibeds

A system representation consisting partially
of actual hardware and/or software, and par-
tially of computer models or prototype
hardware and/or software.

Test Program Set (TPS)

Computer programs written in a HOL, usual-
ly ATLAS, used in conjunction with automat-
ic test equipment (ATE) to isolate a failed
electronic subsystem or component. TPSs
typically are used to generate and inject test
patterns into digital circuit boards or
electronic "black boxes". Modern electronic
components are too complex to be manually
tested.

Unit

A Computer Software Unit (CSU) is the
smallest testable element specified ina Com-
puter Software Component (CSC).

Validation

The process of confirming that the software
(i.e., documentation and computer program)
satisfies all user requirements when operating
in the user’s environment,

Verification

The process of confirming that the products
of each software development phase (e.g., re-
quirements analysis, design, coding, testing)
are complete, correct, and consistent with
respect to the products of the previous phase.

B-5

Appandix B Glossary of Terms

Word

A data packet of information for the com-
puter. It is usually composed of many bits.
The length of a computer word typically ran-
ges from 8 bits for microprocessors to 64 or
more bits for the larger computers. The
memory of a computer is divided into seg-
ments called words.

REFERENCES

.Webster’s Ninth New Collegiate Diction-
ary, Merriam-Webster Inc., Springfield, MA,
1984.

APPENDIX C

Appendix C Outline of Program Manangement Plan

OUTLINE OF PROGRAM MANAGEMENT PLAN

Table C-1shows atypical outline of a Program
Management Plan (PMP) based on AFR 800-
2, Acquisition Program Management, Attach-
ment 3. The other services use a similar

p—y

Program Summary and Authorization
Intelligence

Program Management

Systems Engineering and Congiguration
Test and Evaluation

information Systems

Operations

Civil Engineering

*
w o N O A W N

Logistics

*
—
j=}

Manpower and Organization
Personnel Training

Security

Directives, Specifications, & Standards

—_
ne -

* 13

* Addresses MCCR

Table C-1 PMP OQOutline

outline. Note that six of the sections must
address mission critical computer resources
(MCCR). Depending on the program, there
may be other sections that may also need to
address software. The discussion that follows,

C-1

however, will be limited to those sections
which must address MCCR.

C.1 INTELLIGENCE (Sect 2)
This section includes:

(a) Identification of the Threat, This para-
graph should consist of a listing of all relevant
threats that have been obtained from the
Defense Intelligence Agency (DIA) or other
DOD or armed service agency. Since
software will probably be the major player in
countering these threats, it is important that
the entire spectrum of threats be addressed.

(b) Identification of Relevant Foreign Tech-
nology. Since the U.S. is no longer the un-
disputed world leader in technology, it is
important that foreign technology, especially
that of our allies, be examined to determined
whether any of it can be used in the proposed
system. Our European allies, for example,
have embraced Ada, the DOD standard com-
puter language, with fervor and have made
significant strides in the area of Ada software

Appendix C Outline of Program Manangement Plan

tools. Some of these tools, particularly com-
pilers and Ada code analyzers could be useful.

C.2 PROGRAM MANAGEMENT (Sect 3)

This section provides a description of the ob-
jectives and program strategy (or approach)
in somewhat more detail than Section 1. Ata
minimum, the schedules contained in this sec-
tion should include the following:

(a) Operational system software development
schedules;

(b) Training schedules including the procure-
ment and development of all maintenance
and operational crew trainers;

(¢) Support equipment development and
delivery schedule including ATE and other
software intensive special test equipment;

(d) Development and delivery schedule for
the TPSs associated with the ATE.

C.3 SYSTEMS ENGINEERING & CON-
FIGURATION MANAGEMENT (Sect 4)

This section should describe when and how
the functions of hardware and software con-
figuration management will be accomplished
to include the Configuration Control Board
(CCB) and the Software CCB.

t

C4 TEST AND EVALUATION (Sect §)

This section addresses DT&E and OT&E
schedules including the overall software test
and integration schedules. Tt also describes
the major software support tools and major
test facilities required.,

C.5 MANPOWER AND ORGANIZATION
(Sect 10)

This section describes the organization of the
program office and summarize the relation-
ships and roles of other military and govern-
ment agencies and laboratories. Inparticular,
it deseribes the software organization and its
relation to the other program office organiza-
tions. It also addresses the required software
manpower and skill levels along with possible
sources of key software personnel.

C.6 DIRECTIVES, SPECIFICATIONS,
AND STANDARDS (Sect 13)

This section lists all the directives, specifica-
tions, and standards that will be imposed on
the program including those related to
software and computers. For example, if the
data buss standard, MIL-STD-1553B, or the
Ada programming language standard, MIL-
STD-1815, is inappropriate, the reasons why
itis so should be stated in this section and the
waiver process initiated.

APPENDIX D

Appendix D Test and Evaiuation Master Plan Outline

TEST AND EVALUATION MASTER PLAN OUTLINE

The Test and Evaluation Master Plan
(TEMP) is a key program management docu-
ment whose primary purpose is to describe all
the necessary system Developmental Test and
Evaluation (DT&E) and Operational Test
and Evaluation (OT&E). It relates program
schedules, test management structure and re-
quired resources to critical operational issues,
critical technical characteristics, required
operational characteristics, evaluation
criteria and decision milestones. The formal
outline for the TEMP is given in DOD Direc-
tive 5000.3-M-1 and it is shown in Table D-1.
The TEMP is broken up into five major sec-
tions and three appendices. Hardware and
software thresholds are to be included in the

PART 1 SYSTEM DETAILS
PART il PROGRAM SUUMMARY
PART Il DT&E OUTLINE

PART IV OT&IE OUTLINE

PART V. T&E RESOURCE SUMMARY
APPENDIX A BIBLIOGRAPHY
APPENDIX B ACRONYMS

APPENDIX ¢ POINTS OF CONTACT

ANNEXES (If Appropriate)

Table D-1 TEMP OQutline

D-1

TEMP. It shall describe the physical hardware
tests, software tests, systems tests, simula-
tions, and any analyses needed to provide data
not available through actual testing. In par-
ticular the following sections snould specifi-
cally address MCCR issues:

D.1 SYSTEM DESCRIPTION (Part 1.2)

This section briefly describes the system
design to include the following items:

(a) Key features and subsystems, both
hardware and software, allowing the system to
perform its required operational mission;

(b) Unique characteristics of the system or
unique support concepts resulting in special
test and analyses requirements such as threat
simulations or other system simulators.

D.2 CRITICAL TECHNICAL CHARAC-
TERISTICS (Part1.3)

This section lists in matrix format the critical
technical characteristics or the system that

Appendix D Test and Evaluation Master Plan Outline

have been evaluated or will be evaluated
during the remaining phases of development
testing. For MCCR, this characteristics in-
clude: speed of calculation, memory utiliza-
tion, throughput capability, reliability
(growth), and response time,

D.3 DEVELOPMENTAL TEST AND
EVALUATION OVERVIEW (Part 111.1)

Thissection of the TEMP how the planned (or
accomplished) DT&E will verify the status of
the engineering design, verify that design risks
have been minimized, and substantiate the
achievement of technical performance.
Specifically the narrative should identify the
degree to which system hardware and
software design has stabilized so as to reduce
manufacturing and productions uncertainties.

D.4 SOFTWARE TEST AND EVALUATION
(Part I11.4.C)

In this section all software testing of MCCR
required to demonstrate a quality product,
including post-milestone III updates as called
out in DOD Directive 5000.3-M-3, Software
Test and Evaluation Manual and DOD Direc-
tive 5000.29, Management of Computer
Resources in Major Defense Systems.

D.5S OT&E EVENTS, SCOPE OF TESTING,
AND SCENARIOS (Part V)

This section should identify planned sources
of information (e.g., development testing,
modeling and simulations) that may be used
by the operational test agency to supplement
this phase of OT&E. Whenever models and
simulations are to be used, the rationale for
their credible use should be given.

D-2

D.6 TEST ARTICLES (Part V.l.a)

This section should identify the actual num-
ber and timing requirements for all test ar-
ticles, including key support equipment and
technical information required for testing of
each phase. If key subsystems (components,
assemblies, subassemblies or software
modules) are to be tested individually, before
being tested in the final system configuration,
identify each subsystem in the TEMP and the
quantity required.

D.7 THREAT SYSTEMS/SIMULATORS
(Part V.1.d)

This section should identify the type, number
and availability requirements for alf threat
systems/simulators. It should also compare
the requirements for threat sys-
tems/simulators with available and projected
assets and their capabilities. Major shortfalls
should be highlighted.

D.8 SIMULATIONS, MODELS AND
TESTBEDS (Part V.1.g)

This section should identify the system
simulations required, including computer-
driven simulation models and hardware-in-
the-loop testbeds. The rationale for their
credible use or application must be explained
before their use.

D.9 SPECIAL REQUIREMENTS (Part
V.1.h)

This section should discuss requirements for
any significant non-instrumentation
capabilities and resources such as special data
processing and special databases

APPENDIX E

Appendix E Integrated Logistics Support Plan Outline

INTEGRATED LOGISTICS SUPPORT PLAN (ILSP)

OUTLINE

Table E-1 shows a typical outline of an ILSP.
Guidance for this document is found in MIL-
STD-1369A, Integrated Logistics Support Pro-
gram Requirements (Final Draft), The
following sections should address Mission
Critical Computer Resources (MCCR).

E.1 MAINTENANCE CONCEPT

This section normally describes the three
traditional levels of maintenance: organiza-
tional or field level maintenance, inter-
mediate level maintenance, and depot level
maintenance. Since modern weapon systems
are heavily dependent on electronics, this sec-
tion will discuss the types and number of auto-
matic test equipment (ATE) contemplated
for the three levels of support; the associated
Test Program Sets (TPS) which are used in
conjunction with the ATE to isolate failed
electronics components; and any other com-
puter and software-dependent piece of
calibration or test equipment.

E-1

SECTION I: GENERAL
- System Description (GFE and associated SE)
- Program Management Organization
and Responsibilities
- Applicable Documentation

SECTION li: GOALS AND STRATEGY
- Operation and Organization Concept
- Maintenance Concept
- System Readiness Objectives
- Logistics Acquisition Strategy
- LSA Scope and Tasks
- Supportability T&E Concepts/issues
-ILS Elements
- Supppont Funds
- Post Fielding Assessment

SECTION lll: ILS MILESTONES SCHEDULE
- ILS Comnprison to Program Milestones
- ILS Elements (GFE and associated SE)
- Assignments, Responsibilities and Events

Table E-1 ILSP Outline

Appendix E Integrated Logistics Support Plan Outline

E.2 LOGISTICS
STRATEGY

ACQUISITION

This section summarizes the strategy
described in the Acquisition Plan. For
software and computers, this section should
describe how the logistics support software
will be acquired. For example, who will
develop the ATE and TPSs: the prime
developer, a subcontractor, or another
government agency? Will the program office
delegate the responsibility for acquiring the
ATE and TPSs to another government agency
(as it is often done in the Air Force)? Bear in
mind that development by anyone other than
the prime contractor involves additional con-
tractual considerations (e.g., separate RFPs,
source selections, and contracts). How will
calibration and special logistics support and
test equipment be acquired?

E.3 SUPPORTABILITY T&E CON:-
CEPTS/ISSUES

This section describes the planned suppor-
tability test and evaluation concept, its scope
and objectives. In particular, it addresses test
and evaluation of built-in or supporting auto-
matic operating, testing, and maintenance
equipment, and associated software.

E.4 ILS ELEMENTS

This section addresses all the ILS elements
tailored to each specific phase of the acquisi-
tion. Two software intensive areas are tralning

and training devices and computer resources
support.

E4.1 Training and Training Devices

This section describes how training and train-
ing devices requirements are met and who is
responsible for mceting these requirements.
Since this usually requires complex and com-
puter-intensive trainers, it should identify the
various types and numbers of trainers, their
anticipated location, and availability dates.
Examples of some of the potential trainers
required are: avionics maintenance trainers,
weapons loading trainers, and ATE trainers.

E.4.2 Computer Resources Support

This section describes the facilities, hardware,
software, documentation, manpower, and
personnel needed to operate and support the
embedded computer systems, Particular at-
tention should be paid to the ATE and the
associated TPSs required to isolate problems
in Line Replaceable Units (LRUs) and
electronic circuit cards. Organic maintenance
and support cannot be initiated until the ATE
and the TPSs are delivered. This section
should also describe the plansfor determining
firmware and software support and Post
Deployment Software Support (PDSS) pro-
cedures, requirements, and responsibilities. It
should identify the requirement for prepara-
tion of a Computer Resources Life Cycle
Management Plan (CRLCMP) as an annex to
the 1LSP.

APPENDIX F

Appendix F CRLCMP Outline

COMPUTER RESOURCES LIFE CYCLE MANAGEMENT

PLAN (CRLCMP) OUTLINE

Table F-1 shows the CRLCMP format found
in Attachment 11 of AFR 800-14, Life Cycle
Management of Computer Resources in Sys-
tems. Although the other services do not have
a standard format, the formats used arve very
similar.

F.1 INTRODUCTION

This section states the purpose of the
CRLCMP, lists the approved system
nomenclature, and lists the appropriate re-
quirements documents such as the Statement
of Need (SON) and the System Operational
Concept (SQC).

K.2 SYSTEM CONCEPTS

This section describes the system operational
and support concepts. It bricfly describes the
mission of the system with cmphasis on com-
puter resources; identifics the system fune-
tions which are expected to require frequent
changes to accommodate the operational en-
vironment; and desciiae: the hardware sup-

-1

port concept for the system and for the
software.,

F.3 SYSTEM DESCRIPTION

States the purpose of the operational system
and describes how the computer resources
relate to the overall operational system. Iden-
tifies and describes the characteristics and
functions of the processors in the system and

the functions to be implemented in software
or firmware,

F.4 COMPUTER RESOURCES DESIGN

This section addresses the following:

(a) System Architecture and Design - Iden-
tifies the required hardware and software ar-
chitectures for the system.

(b) Product Improvements - Identifies parts
of the system which will most likely require
future expansion (e.g., memory size, process-
ing capacity, number of interfaces).

Appendix F CRLCMP Outline

SECT SUBJECT

1. Introduction

a. Overview

b. Scope and Applicability
c. References

2. Systems Concept
a. Operational Concept
Support Concepts

T

System Description
Overview
Computer Hardware
Computer Software

ocooe @

»

Computer Resources Design

System Architecture
and Integration

Product Improvements
Software Development Tools
Reusabllity
Interoperability
Additional Design Constraints

~oQ0QCT o

o

Organizational Roles
implementing Command
Supporting Command
Operating Command
Using Command (If Applicable)

apop

®

Participating Commands
Other Agencies

el

6. Resources

Personnel

Facilities

Training

Hardware

Software

Integrated Logistics Support

~oao0oe

SECT SUBJECT

7. Documentation

Types of Documents
Data Rights

Data Management

o Cce

@

Acquisition Management Practices
Software Development Strategy
Boards and Committees
Configuration Management
Documentation Review or Approval
Reviews and Audits
Test and Evaluation
Software Quality
Security

Se ~o a0 oW

©

Transition Management Practices
Configuration Management
Turnover
Support During Transition
Transfer

oo ow

1

o©

Deployment Management Practices
Boards and Committees
Configuration Management
Security
Training

oo oe

11. Schedules

Major Milestones

Contract Delivery Schedule
c. Support Capabilities

oo

Appendices

Acronyms and Abbreviations
Glossary of Terms

List of Key Personnel

CRWG Charter

Risk Management Plan
Detailed System Description
Security Assistance

OTMTMmoOO W >

Table F-1 CRLCMP Qutline

(¢) Software Development Tools - Identifies
and describes the software development tools
and their usage environment. Indicates
whether they are GFE, GFP, commercially
available or contractor developed.

(d) Reusability - Identifies and briefly
describes any developed or soon to be
developed software, tools, environments, or
facilities that may apply to other current or
future weapon systems.

(e) Interoperability - Briefly describes any
interoperability requirements for the system
that are implemented in computer resources.

(f) Additional Design Constraints - Briefly
describes additional performance and sup-
port constraints and considerations which
must be translated into specified require-
ments.

F.5 ORGANIZATION ROLES

This section describes the functional relation-
ships among the implementing command, the
supporting command, the operating com-
mand, and any other participating command
or government agency.

F.6 RESOURCES

This section identifies the personnel,
facilities, training, hardware, software, and in-
tegrated logistics support requirements for
the system.

F.7 DOCUMENTATION

This section summarizes the documentation
requirements, identifies the government’s
software data rights, and describes the plans
and procedures for managing the data.

F.8 ACQUISITION MANAGEMENT
PRACTICES

This section discusses the software develop-
ment strategy; identifies configuration con-
trol boards and their interfaces to other
boards or committees; identifies the existing
directives which will govern configuration
management activities; identifies the
schedule and participating organizations for
computer resource related reviews and
audits; and describes the schedule and par-

-3

Appendix F CRLCMP Outline

ticipating organizations for test and evalua-
tion of computer resources.

F.9 TRANSITION MANAGEMENT PRAC.-
TICES

This section discusses the procedures and
directives which will govern configuration
management and support during and after the
system is transferred from the developing or-
ganization to the using and supporting or-
ganizations.

F.10 DEPLOYMENT MANAGEMENT
PRACTICES

This section identifies the boards and com-
mittees which are created for the manage-
ment of computer resources during the
acquisition phase; identifies the existing
directives governing security for the system;
and describes the activities and major mile-
stones associated with training personnel for
operating and supporting the system.

F.11 SCHEDULES

This section identifies the major milestones
associated with the acquisition, transition,
and support schedules of the system; iden-
tifies the schedules associated with contract
deliverables; and identifies the schedule for
the initial operating capability for the primary
computer resource support capabilities.

F.12 APPENDICES

The appendices will contain the complete
charter for the Computer Resourccs Working
Group (CRWG) as well as the other items
indicated in the CRLCMP outline of Table
F-1. It is extremely important that the pro-
gram manager carefully review the CRWG
charter prior to endorsing it. The CRWG

Appendix F CRLCMP Outline

must reflect the program manager’s objec- forts later in the program. In particular the
tives and philosophy. Failure of the program responsibilities of all the CRWG organiza-
manager to carefully review this charter can tions must be clearly spelled out to minimize
lead to misunderstandings and/or wasted ef- turf battles.

F-4

APPENDIX G

Appendix G Source Selection Plan

SOURCE SELECTION PLAN

Table G-1shows an outline of a Source Selec-
tion Plan (SSP) as given in AFR 70-15, Source
Selection Policy and Procedures. The other
services use a similar format. The following
sections that should address mission critical
computer resources.

G.1 SOURCE SELECTION ORGANIZA-
TION (Sect 2)

This section describes the Source Selection
Authority (SSA), the Source Selection Ad-
visory Counsel (SSAC), and the Source Selec-
tion Evaluation Board (SSEB organizations
and lists recommended key members by
name, or by position or functional area. It
must also specify other government organiza-
tions that will be represented on the SSAC
and SSEB, and include an estimate of the total

Introduction

Source Sclection Organization
Screening Criteria
Bvaluation Process
Livaluation Criteria

Acquisition Strategy

DN I N O~ N S

Schedule of Hvents

Table G-1 SSP Outline

number of personnel who will form the mem-
bership, including any advisors.

It is important that the key software person on
the SSEB be very knowledgeable about
software acquisition. Finding this individual
will not be easy since knowledgeable, senior
software individuals are not always readily
available. If this individual is a member of the
program office, then his or her availability will
not be a problem. However, if no such in-
dividual can be found within the program of-
fice, searching for that individual must
become a matter of high priority.

If the program office is newly formed and
without a knowledgeable software individual,
the program manager must look to either
other program offices, laboratories, or other
external organizations for an individual who
canspend one to three months (atypical dura-
tion period for a source selection) away from
his or her current job. The longer the source
selection, the more difficult it will be to find
this individual. Ideally the senior software
person in the source selection should be the

Appendix G Source Selection Plan

same individual who will be managing the
effort once a developer is selected. Since the
sclection of the right software deveioper is
paramount to the success of the entire pro-
gram, finding a knowledgeable softwarc
evaluator should be the number one priority
of the program manager.

G.2 SCREENING CRITERIA (Sect 3)

This section describes the criteria to be used
to select prospective sources. The screening
criteria must be developed prior to the official
publication of the planned procurement ef-
fort in the Commerce Business Daily (CBD).
It will be used by procurement personnel to
determine potential sources based on the let-
ters of interest received in response to the
CBD announcement. Contractors who have
expressed mterest and satisfy the screening
criteria will receive copies of the proposal
package. Even if a contractor has failed to
satisfied the screening criteria, it may still
reccive a copy of the proposal if it requests it.
Ordinarily, however, not too many contrac-
tors wish to pursue a procurement in which
the government doesn’t feel it is competitive.

The screening criteria must include the re-
quirement that the sources solicited will have
(inherently or by subcontracting or teaming
arrangements) the management, financial,
technical expertise, and security clearances to
design and develop the system software.

G.3 EVALUATION CRITERIA (Sect §S)

This section describes the specific evaluation
criteria which will be used to judge all of the
proposals. In generating the evaluation
criteria, the program office must ensure that
criteria is not overly restrictive or biased
towards a particular approach or technology.
Remember that the developer should have
the fatitude to select both the technology and

G-2

approach that best satisfies the stated require-
ments. Unless there are valid reasons for
forcing the contractor to pursue a particular
path, such as compatibility with an existing
system, the evaluation criteria should reflect
the general requirements and not a particular
design.

G.4 ACQUISITION STRATEGY (Secct 6)

This section will include a summary of the
acquisition strategy, including type of con-
tract(s) proposed, the incentives con-
templated, milestones demonstrations
intended, and special contract clauses to be
used.

A strategy that may be used is to make the
prime contractor responsible for developing
all of the system zoftware or subcontracting it
out. Another approach may be to direct the
prime contractor to subcontract critical por-
tions of the software to specialized software
houses. For example, a defensive avionics
subsystem may be subcontracted out to asub-
contractor specializing in electronic warfare
systems.

With the increasing role played by digital
electronics subsystems, an important segment
of scftware is the develcpment of Test Pro-
gram Sets (TPS) for automatic test equipment
(ATE). Since TPS develonment is a highly
specialized business, a prime contractor nor-
mally does not have the expertise to develop
them, Even if he did, it is not prudent to put
so many software eggs in one basket. 't may
be highly advisable to contract separately for
TPS development. This will mean a separate
source selection effort.

Other specialized software areas are trainers
and simulators. Once again it may be prudent
to contract these efforts separately. For a
major simulator such as a weapon systems

trainer, the program office may delegate this
responsibility to another organization or pro-
gram office.

Whatever strategy is selected, the most likely
approach will involve more than one contrac-
tor. It is important that the proposal clearly
state the government’s preference so that the

Appendix G Source Selection Plan

contractors include in their proposals the cost
of coordinating with other contractors.

Finally this section should state whether the
program office will use an Independent
Verification and Validation (IV&V) or-
ganization and their level of involvement with
the software developers.

G-3

Appendix H Softnare Data Item Descriptions (DIDs)

APPENDIX H

SOFTWARE DATA ITEM DESCRIPTIONS (DIDs)

SPECIFICATION DIDs

DI-CMAN-80008A
DI-CMAN-80534

DI-MCCR-80025A
DI-MCCR-80026A
DI-MCCR-8NM)29A

DOCUMENTATION DIDs

DI-MCCR-80030A
DI-MCCR-80012A
DI-MCCR-80013A
DI-MCCR-80014A
DI-MCCR-20015A
DI-MCCR-80017A
DI-MCCR-80018A
DI-MCCR-80019A
DI-MCCR-80021A
DI-MCCR-80022A
DI-MCCR-80024 A
DI-MCCR-80027A

System/Segment Specification (S8S)

System Segment Design Document (SSIDD)
Software Requirements Specification (SRS)
Interface Requirements Specification (JRS)
Software Product Specification (SPS)

Software Development Plan (SDP)

Software Design Document (SDD)

Version Description Document (VDD)
Software Test Plan (STP)

Software Test Description (STD)

Software Test Report (STR)

Computer System’s Operator’s Manual (CSOM)
Software User’s Manual (SUM)

Software Programmer’s Manual (SPM)
Firmware Support Manual (FSM)

Computer Resources Support Document (CRISD)
Interface Design Document (ICD)

H-1

Appendix |1 Applicable Software Referances

APPENDIX I

APPLICABLE SOFTWARE MANAGEMENT REFERENCES

FAR Part 27

FIRMR Part 201-7

DFAR Part 270
DOD DIR 3405.1
DOD DIR 3405.2
DOD DIR 5000.1
DOD DIR 5000.2
DOD DIR 5000.29
DOD DIR 5000.40
DOD DIR 5200.28
DOD FAR

Sup 52-227

DOD FAR Sup 70
DOD-STD-2167A
DOD-STD-2168

DOD-STD-5200.28

DOD HDBK-287
DOD 5000.3-M-3
MIL-STD-1521B

MIL-STD-1815A

Federal Acquisition Regulation

Federal Information Resource Management Regulation

Defense Federal Acquisition Regulation

Computer Programming Language Policy

Use of Ada in Weapon Systems

Major System Acquisition

Defense Acquisition Program Procedures

Management of Computer Resources in Major Defense Systems
Responsibility for the Administration for the DOD ADP Program
Security Requirements for Automated Information Systems

Rights in Technical Data and Computer Software
Acquisition of Computer Resources
L'=fense System Software Development
Defense System software Quality Program
Department of Defense Trusted Computer System Evaluation Criteria
Defense System Software Development Handbook
Software Test and Evaluation Master Plan Outline
Technical Reviews and Audits for Systems, Equipments,
and Computer Software
Ada Programming Language

I-1

Appendix | Applicable Software References

OMB Cir A-130 Management of Federal Information Resources
Pub Law 89-306 Brooks Bill, Warner-Nunn Amendment and Implementing Directives
IEEE P982/D2.4 "DRAFT" Standard for Measures to Produce Reliable Software
IEEE P982/D35 "DRAFT" Guide for Use of Standard Measures to Produce

Reliable Software
AFR 800-14 Life Cycle Management of Computer Resources in Systems
AFSCP 800-43 Software Management Indicators
AFSCP 800-14 Software Quality Indicators
AFSCP 800-45 "DRAFT" Software Risk Abatement
FSCP/AFLCP 800-5 "DRAFT" Software Independent Verification and Validation (IV&V)
ASDP 800-5 Software Development Capability/Capacity Review
ESD-TR-88-001 Software Management Metrics

-2

INDEX

Index

Note: In most cases the acronym is used in this
index. See Appendix A for a list of acronyms.

Ada 3-13, 4-4,4-5,6-3,9-3
Environment 3-16
Language Features 3-15
Policy 4-4
Waiver 4-4

Abstraction 3-15

AFR 800-14 7-7

AFSC/AFLCP 800-5 11-3,11-4

AIS 49

AlS Policy 4-9

ANSI 4-6

Architecture 9-4

ASCII 3-8

ASD Pamphlet 800.5 8-13

Asscmbler 3-10

Asscmbly Language 3-10

Asscssing Performance 13-10

ATE 6-2

ATLAS 4-4

Audits 9-7

Avionics 3-3

Bascline
Allocated 10-6
Developmental 10-7
Functional 10-6
Management 10-6
Product 10-7

BASIC 4-5

Binary 3-8, 3-10

J-1

Bit 3-8

Boolean Logic 3-7
Bottom-up Design 13-6
Brooks Bill 4-1, 4-9
Buss 3-9

CAD/CAM 13-2

Capability and Capadcity Review 8-12

Capability Eval Tcam 8-15

CCB 10-7

CDR 2-9, 5-3, 6-2, 6-7, 6-15, 10-6

CDRL 8-9,10-3

CE5-2,6-1,7-7,8-1,8-4

CET 8-15

Changeability 9-4

CI Selection 10-2

CIDS 8-3

CLINs 8-8

CMP 5.5, 8-7, 10-3

CMS-2 4-4,4-5

COBOL 3-11, 4-4,4-5

COCOMO 12-7,13-7

Coding 5-9

Compiler 3-12

Computer
Architecture 3-7
Definition 3-1
Embedded 3-3, 3-5
Flight Control 2-5
Hardware 3-3
Instrumcntation 2-5
Mission Support 26
Navigation 2-5

Computer (Continued)
Resources 3-4
ISA 3-8,39
Configuration
Audit 10-11
Control 10-3
Control Process 10-9
Functional 10-2
Physical 10-2
Status Accounting 10-10
Configuration Control Board 10-3
Configuration Management 3-6, 6-13, 7-10, 10-1
Configuration Review Board 10-4
Contracts 8-6
Air Force 8-6
Evaluating Proposals 8-12
Evaluation 8-11
Fees 9-4
Incentives 9-4
Instruction to Offerors 8-7
Proposal Evaluation 8-8
Control Systems 9-5
Copyright 4-8
Cost
Estimating 8-7, 11-6
Hardware 2-3, 2-4
IV&V 11-1, 11-7
Life Cycle 9-4
Post Deployment 2-3, 7-12, 7-7
Problems 9-6
Software 2-3, 7-2,7-3, 13-3
Software Fixes 6-5
Status 12-7
COTS 8-9
CPU 3-2
CRISD 5-11
CRLCMP 5-5,7-7,7-8,8-3, 84, 8-6, 8-7
CRWG 8-4,10-5
CSC 5-5,6-3,10-3
Integration 12-8
CSCI 5-5, 5-10, 6-4, 10-2, 10-3, 11-2
CSOM 5-11
CSU 5-3,5-5,10-3

Data Analysis Tools 6-14
Data Reduction Tools 6-14
Data Rights 4-8, 4-9
Defense Science Board 4-7
Dcemming Philosophy 9-5
Design

Detailed 5-8

J-2

Index

Design (Continued)
Metrics 12-10
Preliminary 5-7

Development Model 13-4

DIDs 8-7, Appendix H

Documentation 2-9, 3-6, 3-7, 5-8, 5-9, 7-10, 9-2, 9-8

DOD Directive
3405.1 4-4,4-5
3405.2 3-17,4-4
5000.29 4-2,4-7
5000.3-M-3 6-2

DOD Instruction
5000.31 4-4
7920 4-9

DOD-STD
2167A 4-4,5-1,5-5, 5-8, 5-11, 8-7,9-4,11-6
2168 4-4,5-14
480A 10-1
5200.28 8-6

DT&E 6-2, 6-4, 6-10, 11-3

D/V 5-2,8-1,10-2

ECP 10-4,12-10

EEPROM 3-6

Emulation 6-4

Engineering Change Proposals 10-4, 12-5
EPROM 3-6

Evolutionary Development 9-4, 9-10
Exception Handling 3-15

FAR 3-5,4-9

FCA 5-4,10-11
Feasibility Studics 8-4
Firmware 3-5, 8-7
FORTRAN 3-11, 4-4, 4-5
FQT 11-2

FQR 5-3,5-12

FSD 5-2,8-1,8-7, 10-5
FSM 5-11

Functional Analysis 5-2

Generics 3-16
GFE 9-6
GFI 9-6
Gist 9-9

HOL 3-11, 4-3, 8-4
Human Factors 3-14

I/0 3-2
1C 3-6,4-6

ICWG 10-5
IDD 5.7
ILSP 7-8,8-2, Appendix E
Incremental Development 9-6, 9-10
Information Hiding 3-15
Inspections 9-7
Instruction Set Ar. hitecture 3-8, 3-9,4.7
Integrated Circuits 2-2, 3-2, 4-6
Integration 9-8
CSC 12-4
Interface
Controls 9-3, 10-5
Definition 8-3
Interfaces 8-12
IRS 5-4,6-2,8-3,8-4,10-6
ISA 3-8, 3-9,4-7
ISO 4-6
IV&V 6-7,6-15, 8-5, 8-8, 11-1
Levels 11-5
Need 11-3
Scope 11-4
Selecting Agent 11-7
Tasks 11-5

JOVIAL 4-4,4-5

Language 3.9, 8-8
See also;
Ada
Atlas
Basic
C
CMS-2
COBOL
FORTRAN
JOVIAL
PASCAL
SPC/1
TACPOL
License Agreements 4-9
Localization 3-15

Machine Language 3-10

Management
Baseline 10-6
Checklist 9-11
Guidance 13-9
Guidelines 9-3, 9-5
IV&V 11-1
Metrics 12-1
Monitor 8-4

PDSS Guidance 7-11
Planning 8-1
Manning 13-6, 13-7
Margins 9-6
MCCR 4-1,4-2
Management Steering Committe 4-2
Policy 4-3
Memory 3-3, 8-12, 9-6
Metrics 8-7, 9-6, 12-1
Adjustments and Refinements 12-6
Application 12-2
Choice 12-5
Contract Monitoring 12-6
Cost 12-7
Delivery Status 12-13
Development 12-10
Government Model 12-3
Management 12-1
Manpower 12-8
Negotiation 12-5
Pre-Solicitation 12-3
Process 12-2
Process Maturity 12-5
Program Manager’s 12-6
Resource Needs 12-3
Resources 12-9
RFP/SOW 12-4
Size 12-7
Types 12-1
Quality 12-2
Use of Models/Norms 12-6
Microprocessor 2-2
MIL-STD
15216 5-3,9.7
1750A 3-9,4-3, 4-7
1815A 4-6,11-7
483A 10-1,10-2
882 11-4
MITRE 8-14
Models 6-1
Modularity 3-15,9-4

NCSC 8-6
Noise 6-12

Objcct Oriented Design 6-2, 9-3
Object Oricnted Programming 9-3
OFP 8-8

00D 2-7,5-7,9-3

Operating Systems 8-12
Operational Concept Analysis 5-4

(Y

e |

Index

OPNAVINST 5200.28 7-7

Orange Book 8-6

OT&E 6-2, 6-4,6-13, 11-3

Packages 3-15

PASCAL 4-5

Patches 6-16

Patent 4-9

PCA 5-3,5-11, 10-11, 12-12

PUL 3-17, 6-2, 12-11, 13-8

PDR 2-9,5-3,5-6, 6-2, 6-7, 6-15, 10-6, 12-10, 13-7

PDSS 4-7,7-15, 8-4
Air Force 7-8
Army 7-8
Concept 8-4
Corrections 7-11
Distribution of Corrections 7-11
Documentation 7-10,7-11
Enhancements 7-10
Evaluation of Complaints 7-10
Funding 7-9,7-3
Integration Testing 7-10
Interoperability Testing 7-10
V&V 79
JLC Workshop 7-2
Location 7-8
Management Concerns 7-4
Management Guidance 7-11
Management perceptions 7-3
Marine Corps 7-8
Navy 7-8
Organization Chain 7-8
Policy 7-9
Process 7-7
Software Environment 7-9
Strategy 7-8
SW Enginecring Change 7-10
What is 7-5

Pcopleware 3-6

PIDS 8-3

PMP 8-1

Problem Reporting 10-8

Product Baseline 5-11

PROM 3-6

Productivity 3-10, 3-13

Prototype 5-6, 8-8, 9-6, 9-8, 13-5

PSL/PSA 9-8

Real-time 2-8, 3-2,9-4
Requirements
Analysis 5-6
Analysis Tools 6-14

J-4

Index

Requirements (Continucd)
Analysis/Design 5-3
Definition 8-3, 9-4, 9-8
Refinement 5-4
Specification 12-10
Testability 9-7
Traceability 5-1,9-2,9-7

Resource Planning 9-3

Resources Leverage 9-3

Restricted Rights 4-9, 8-9

Recuse 8-7,13-3

Reviews 5-2,9-3, 9-6, 9-7

RFP 8-7,10-3, 12-4
Draft 89

Risk 5-4,8-4,8-7,9-6,9-7

ROM 3-6

RSL/EVS 9-8

SADT 9-9

SCE 8-14, 12-5, 12-6

Schedule 9-8
Problems 9-6

Schedules 9-3, 13-8

Scheduling 6-3

SCM 10-1
Audit 10-11
Class I 10-4, 10-5
Class 11 10-4, 10-5
Control 10-1
Identification 10-1
Library 10-10
Status Accounting 10-1

SCRB 10-7

SDCCR 8-12
Factors 8-13
Tecam 8-13

SDD 5-7

SDF 5-8

SDP 6-2, 8-6, 8-7, 10-3

SDR 5-2, 8-3, 10-2, 10-6

Sceurity 8-6
Accreditation 8-6
Certification 8-6

SEI 8-14,9-5, 4-7

SETA 12-4

SIF 6-9

SIL 6-4,6-12

Simulation 6-11

Simulators 6-1
Environment 6-11
System 6-11

Sizing 8-7
SLOC 12-7,12-8
Software
Acquisition Cycle 13-4
Productivity 13-1
Software Capability Evaluation 8-14
Software Development 5-1, 5-4
Software Development Folder 10-11
Software Development Library 10-10
Software Enginecring 2-1, 2-7, 3-13, 3-15, 4-6, 5-1, 9-2
Softwarc Engincering Institute 4-7
Software Errors 6-5
SON 11-3
Source Program 5-9
Source Sclection 8-9
Source Sclection Org anization 8-10
Special Requirements 8-9
SSA 8-6
SSAC 8.7
SSP 8-6
SOW 5-13, 8-2,8-8
Spccial Interest Items 9-6
Specifications
C-5 5-11
System 5-3
Typc A 5-4
SPL/1 4-5
SPM 5-11
SPR 12-12
SPS 5-11
SQPP Appendix H
SRR 5-2,10-6
SRS 5-5,6-2, 8-3, 8-7, 10-6, 11-3, 11-4, 12-11
SSA 8-6
SSAC 8-11
SSDD 8-3
SSEB 8-11
SSR §-3,5-5,12-10
SSS 5-4,8-3,8-4,11-4
Standards 2-7,2-9, 3-9, 4-3, 4-8, 5-1, 5-2, 5-3, 5-5,
6-2, 6-4, 6-12, 8-8, 8-14
STARS 4-7,13-2
Statement of Need 11-3
Static Analysis Tools 6-11
STP 5-7,6-2,6-13
STR 5-11
Structured Design 9-2
Subcontracts 8-7
SUM 5-11
Support
Organic 8-12

J-5

Support (Continued)
Resources 6-1
Studics 8-4
Vendor 8-12
Facilities 3-7
System/Segment Designs 5-3

TACPOL 4-4

Tailoring 5-12

Tasking 3-16

Teaming 8-7

TEMP 5-3, 6-1, 8-2, 8-5

Test 5-9
Against Requirements 9-7
Black Box 6-8
Bottom-Up 6-10
Dcbugging 6-14
Desk Checking 6-7
Facilitics 6-12
Formal 5-10
Hot Bench 6-4, 6-12
Human 6-6
Informal 5-10, 6-3
Inspcctions 6-6, 9-2
Integration 5-10, 5-12, 6-4, 6-12
PDSS 7-10
Pcer Ratings 6-7
Planning 6-1
Resources 6-1, 6-12
Software Only 6-8
Software System 6-8
Support 6-1
Tools 6-13
Top-Down 6-1)
Types 6-6
Walk-Throughs 6-7,9-2
White Box 6-9

Testing
Formal 11-3
Informal 11-3

Text Editors 6-14

Throughput 3-9, 8-12, 9-6

Tools 8-5
Dcbugging 6-14
Development 8-12,9-2,6-6
Specification Development 9-8

Top-Down Design 13-5

TPS 8-8

Trade Secret 4-8

Tradeoff & Optimization 8-4

Tradceoff and Optimization 54

Index

SECURITY CLASSIFICATION OF THIS PAGF

form Approved

REPORT DOCUMENTATION PAGE OM8 Ne (704-0188

Exp Nate tun 30, 1986

ta REPORT SECURITY CLASSIFICATION b ReSTRICTIVE MARKINGS
Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION J AVAILABILITY OF REPORT

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATIGN REPORT NUNIBER(S)
6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a NAME OF MGNITORING OKGANIZATION
Defense Systems Management (1f applicable)
College SR
bc. ADDRESS (City, State, and ZiP Code) 7b AODRESS (City, State, and ZIP Code)

SMC~SE-T

Fort Belvoir, VA 22060-5426

8a. NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Systems (1f apolicable)
Management College
8¢. ADDRESS {City, State, and ZIP Code) 10. SOURCE OF FUNDING NURNBERS
PROGRAM PROJECT TASK WORK UNIT
DSMC~SE-T ELEMENT NO. § NO NO ACCESSION NO

Fort Belvoir, VA 22060-5Lk26
11. TITLE (Include Security Classification)

Jdssion Critical Computer Resources Management Guide (U)

12. PERSONAL AUTHOR(S)

1, Carc, R. Hipuera. F. Kockler, &, Jaccbson. A. Roberts
13a TYPE OF REPORT 13b TIME COVERED 14 OATE OF REPORT (Year, Month, Day) |15 PAGE COUNY
FROM TO 200

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and wdentity by block number)
FIELD GROUP SUB-GROUP Computers Melriecs
Software Softwire Support
Weapon Systons S/W Pevelopmenl Cyelo N

19 ABSTRACT {Continue on reverse if necessary and identify by block number)
This document is one ol a family of educational guides wrilicn {rom a Department, of Defense
(DOD) Perspective (i.c., non-service peculiar). These books are intended primarily for -
use iu the courses al the Defense Systems Management Colicge (DSMC) and sccondarily as a
desk reference for program and project management pergsonncl. The books arc writtoh ffor
current and potential DOD Acquisition Managers who have some Familiarity with the busic
terms and definitions of the acquisition process. 1t is intended to assist bhoth the
Government and industry personnel in exccuting iheir managenent responsibiiities relative
to the acquisition and support of defense systems. This family of technieal puldebooks
includes: "Integrated Logistics Support Guide," First Edition, Mav 1906, "Cysioms
Engincering Managemeot Guide," Second Edition, December 19863 "Depurtment of Dofense
%anufucturing HManagement Handbook for Program Managers,” Second Edition, July 198k;
Test and Evaluation Management Guide," March 19883 "Acquisition Strutegy Guide," First
Edition, July 19845 “Subcontracting Management Handbook,'" First Edition; 19885 A Program
Office Guide to Technology Transicr,” Novesbior 1988, ;

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
GRUNCLASSIFIED/UNLIMITED £ SAME AS RPT [DTIC USERS Unclassilied - "
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Ares Code) | 22¢ OFFICE SYMBOL
Israel 1. Caro (J03) Qol-0198 Sl
DD FORM 1473, 8a MAR 83 APR edition may be used until exheusted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

